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In recent years, the drastically enhanced architecture and capacity of

Field-Programmable Gate Array (FPGA) devices have led to the rapid growth

of customized hardware acceleration for modern applications, such as machine

learning, cryptocurrency mining, and high-frequency trading. However, this

growing capability raises ever more challenges to FPGA placement engines. A

modern FPGA device consists of heterogeneous logic resources that are un-

evenly distributed across the layout. This heterogeneity and nonuniformity

bring difficulties to achieve smooth and high-quality placement convergences.

Furthermore, FPGA devices contain complex clocking architectures to de-

liver flexible clock networks. The physical structure of these clock networks,

however, are pre-manufactured, unadjustable, and of only limited routing re-

sources. Conventional placement approaches without clock feasibility consid-

eration, hence, can easily lead to clock routing failures and fail the entire

FPGA implementation flow. Lastly, given the special standing of FPGAs in

vii



fast prototyping and frequent reprogramming, its implementation time is be-

coming a crucial determining factor to get customers’ favor. Therefore, as a

runtime bottleneck of the FPGA implementation flow, ultra-fast and efficient

placement engines are also in great demand.

This dissertation provides a set of placement algorithms and methodolo-

gies for large-scale heterogeneous FPGAs. To essentially improve the quality

of FPGA implementation, we propose three core analytical placement engines

with distinct methodologies: (1) UTPlaceF, a quadratic placer with physical-

aware packing; (2) UTPlaceF-DL, a quadratic placer with simultaneous pack-

ing and legalization; (3) elfPlace, an electrostatic-based nonlinear placer. To

honor the clock feasibility, we propose an efficient clock-aware placement algo-

rithm, UTPlaceF 2.0, as well as its generalized version, UTPlaceF 2.X, which

produces feasible clock routing solutions together with high-quality placement.

To reduce the turn-around time of FPGA implementation, we propose an

ultra-fast placement engine, UTPlaceF 3.0, which exploits the parallelism on

multi-core systems. The effectiveness and efficiency of proposed approaches are

demonstrated with extensive experiments on industrial-strength benchmarks.
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Chapter 1

Introduction

The field programmable gate array (FPGA) is a type of premanufac-

tured integrated circuit designed to be configured by designers. FPGAs are

becoming increasingly attractive for their reconfigurability, shorter time-to-

market, and lower non-recurring engineering costs. Beyond the success in

traditional applications like fast application-specific integrated circuit (ASIC)

prototyping, FPGAs have also demonstrated their applicability as hardware

accelerators in modern applications, such as machine learning, cryptocurrency

mining, and high-frequency trading.

The advancement of FPGA-based design methodologies is inseparable

from the support of FPGA computer-aided design (CAD). A typical FPGA

CAD flow, as illustrated in Figure 1.1, starts from the system specification,

which characterizes the functionality of the target system. Then architectural

design describes the logical behavior in either high-level synthesis languages

(e.g., OpenCL [71] and Vivado HLS [29]) or behavior-level hardware descrip-

tion languages (e.g., Verilog and VHDL). After that, high-level synthesis, logic

synthesis, and technology mapping steps translate the architectural design into

a gate-level netlist. Given the results of logic design, the task of physical design
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  module counter
      input clk;
      output [3:0] dq;
      …
  endmodule

AND

OR

Figure 1.1: A typical FPGA CAD flow.

is to realize these abstract logical representation into geometric implementa-

tion on the FPGA fabric. Physical design contains the placement step to

determine instance physical locations and the routing step to realize physical

connections among instances. At last, a bitstream is generated based on the

physical design results and deployed on the target FPGA device to finish the

entire implementation flow.

1.1 FPGA Placement Problem

Placement, as the step to bridge logic design and physical layout, is

essential to the FPGA implementation. Modern FPGA has thousands of dig-
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Figure 1.2: Illustrations of (a) a heterogeneous FPGA and (b) a configurable
logic block (CLB).

ital signal processing (DSP) and random-access memory (RAM) blocks and

millions of lookup table (LUT) and flip-flop (FF) instances. These heteroge-

neous resources are exclusively scattered over discrete locations on the FPGA

fabric, as illustrated in Figure 1.2. The task of placement is to assign ex-

act locations for these heterogeneous components within the FPGA layout.

Placement greatly determines the overall FPGA implementation quality and

efficiency. An inferior placement solution can burden the downstream routing

step by producing excessive wirelength, which not only hampers the design

performance but also exacerbates or even fails the implementation closure.

Consequently, a favorable placement engine has to optimize various objec-

tives to meet the design targets and ensure smooth implementation conver-
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gence. Typical placement objectives include wirelength, routability, timing,

and power. Minimizing total wirelength is often regarded as the major ob-

jective since it is a reasonable first-order approximation of routability, timing,

and power. Besides minimizing the wirelength to reduce the total routing re-

source usage, it is also necessary to ensure local routing feasibility. A placer,

therefore, must be able to predict and distribute routing demand in a way that

the routing demand is no greater than the routing resource over all local re-

gions in the FPGA fabric. The maximum frequency of a design is determined

by its longest timing path, which usually referred as the critical path. To meet

a given frequency target, a placer has to ensure the delay of the critical path

is no greater than the according delay requirement. Power optimization often

involves detecting and redistributing thermal hotspots to ease the cooling issue

of FPGA devices.

Besides the aforementioned optimization objectives, an FPGA placer

also has to honor a set of architectural constraints to produce feasible place-

ment solutions. As shown in Figure 1.2, the majority of an FPGA layout is

composed of configurable logic blocks (CLBs), where each CLB consists of a

set of basic logic elements (BLEs) and each BLE further contains multiple

LUTs and FFs. Due to the prefabricated and limited hardware resources in

each CLB, LUTs and FFs in the same CLB must follow certain rules, usually

referred as packing rules, to maintain placement feasibility. Typical packing

rules include the maximum input constraint and the control set constraint.

The maximum input constraint, in general, requires that the total number of
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input pins in a BLE/CLB is no greater than the available pin resource. The

control set constraint, on the other hand, requires that FFs in a BLE/CLB

must share the same clock, set/reset, and clock enable signals. In addition to

these subtle packing rules, the complex clocking architectures of modern FP-

GAs also impose extra constraints on placement. As shown in Figure 1.2(a),

an FPGA can often be divided into a grid of clock regions (CRs), each of

which has only limited routing resources dedicated to clock networks. Conse-

quently, placement without careful clock network planning can easily lead to

unroutable clocks and fail the entire FPGA implementation.

Given its complexity, the FPGA placement problem is usually decom-

posed into several easier sub-problems, namely, global placement, packing,

legalization, and detailed placement. Global placement targets at producing a

nearly-legal placement solution while globally optimizing the aforementioned

placement objectives. Packing aims at addressing the packing-legality issue,

which is usually not considered during global placement, by grouping LUTs

and FFs into architectural-legal and placement-friendly CLBs. The execution

order of global placement and packing varies from methodology to method-

ology, and they can also be interleaved together to achieve even smoother

placement convergence. Legalization produces a feasible placement solution

by locally perturbing the result of global placement and packing. Detailed

placement further conducts local refinement while maintaining the solution

feasibility.
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1.2 Evolution of FPGA Placement

In the early age of FPGA placement, simulated-annealing (SA) ap-

proaches [7, 11] dominated industry and academic research. SA approaches

iteratively perform probabilistic swapping to progressively improve placement

solutions. Despite working well for small designs, it was no longer scalable

as the FPGA capacity grows rapidly. Industry and academia then turned

to minimum-cut approaches [56], which distribute placable instances by re-

cursively partitioning the netlist. By leveraging the advancement in graph

and hypergraph partitioning [21, 30–32], minimum-cut approaches were able

to provide leading-edge performance on designs with tens of thousands of

gates. As the gate count of FPGAs reached the scale of millions, analyt-

ical approaches started to steadily outperform minimum-cut approaches in

both runtime and quality. Different from the combinatorial-driven SA and

minimum-cut approaches, analytical approaches formulate the placement as a

more sophisticated continuous optimization problem and solve it using vari-

ous principled gradient descent methods. Analytical approaches can be further

divided into quadratic approaches [3,12,24,25,40,44,77,78] and nonlinear ap-

proaches [14,43,50]. Quadratic approaches approximate placement objectives

using efficient quadratic functions, while nonlinear approaches use more ex-

pressive higher-order ones.

The first milestone packing algorithm in the literature, VPack [6], was

proposed in the late 1990s. VPack pioneered the seed-based packing ap-

proaches. It constructs each CLB by first choosing a seed instance and it-
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eratively growing it based on an attraction function until no more instances

can be added. Motivated by the success of VPack, many seed-based packing

algorithms with various optimizations, such as timing, power, and routability,

were successively proposed [8,52,58,66,67,73–75]. In contrast to the bottom-up

strategy of seed-based approaches, minimum-cut packing approaches adopt the

top-down recursive partitioning scheme to produce packing solutions [20, 59].

However, minimum-cut approaches often cannot honor complicated packing

rules and require a sequence of legalization moves to achieve architectural-

feasible solutions. This made the simple yet effective seed-based approaches

dominant for a decade. In the late 2000s, the concept of physical packing

was first introduced to smooth the gap between packing and placement [9].

Besides considering netlist information, physical packing approaches further

incorporate spatial information from initial rough placement to ease the ac-

tual downstream placement stage. As the design size increases, physical pack-

ing approaches started to demonstrate their significant advantages in solution

quality over other pure-logical approaches, which made it prevalent in both

industry and academic research [3, 12,40,68].

1.3 Challenges of FPGA Placement

Although the FPGA placement problem has been extensively studied

for decades, it still remains challenging due to the drastically growing FPGA

scale and complexity. The major challenges can be categorized as follows.

Improving solution quality. For modern FPGA applications, such
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as deep learning and data center, the operating frequency and power consump-

tion are important determining factors to occupy market share. Placement,

as the first physical design step, has a great impact on the overall FPGA

implementation performance, and therefore, essentially improving placement

quality has always been a fundamental need. However, the increasingly com-

plex and heterogeneous FPGA architectures have been consistently challenged

the effectiveness and capability of modern placement engines.

Honoring architectural constraints. The rapid evolution of FPGA

architectures also imposes extra layout constraints to placement. One such

example is the clock feasibility constraint, which requires placers to guarantee

the existence of feasible clock routing solutions while optimizing other objec-

tives. These extra architectural constraints are mandatory for solution feasi-

bility, however, their discreteness and irregularity often make them extremely

difficult to handle in placement.

Enhancing runtime scalability. With the increasing FPGA scale

and the growing need for fast and frequent reconfigurability, the implementa-

tion time of FPGA-based design methodologies is becoming a concern. Given

the fact that placement is one of the most time-consuming optimization steps,

improving algorithm scalability and runtime is another urgent demand for

modern FPGA placement.
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1.4 Dissertation Overview

This dissertation provides a set of placement algorithms and method-

ologies to tackle design challenges of large-scale heterogeneous FPGAs.

Chapter 2 explores different core placement methodologies and pro-

poses three distinct analytical placement engines to essentially improve FPGA

implementation quality: (1) UTPlaceF [40], a quadratic placer with a sophis-

ticated physical-aware packing algorithm; (2) UTPlaceF-DL [44], a quadratic

placer with a novel simultaneous packing and legalization algorithm inspired

by the real-world college admission process; (3) elfPlace [43], a nonlinear placer

motivated by the analogy between electrostatic system and placement.

Chapter 3 proposes two clock-aware placers that are capable of ensur-

ing clock network feasibility while achieving satisfiable solution quality: (1)

UTPlaceF 2.0 [42], an extension of UTPlaceF that resolves clock routing con-

gestion by a novel iterative minimum-cost flow method; (2) UTPlaceF 2.X [38],

a generalization of UTPlaceF 2.0 that explores an even larger clock routing

solution space based on a branch-and-bound algorithm.

Chapter 4 proposes a parallelization framework, UTPlaceF 3.0 [41],

for quadratic placement approaches. To achieve massive parallelism, UT-

PlaceF 3.0 tailors the traditional block-Jacobi preconditioning technique to the

placement problem. Besides, the additive multi-grid method is also adopted to

mitigate the quality degradation introduced by the parallelization. By lever-

aging the power of multi-core systems, UTPlaceF 3.0 demonstrates satisfiable
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speedup with competitive solution quality.

Chapter 5 concludes this dissertation and discusses potential future

directions for FPGA placement.
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Chapter 2

Core FPGA Placement Algorithms

2.1 Introduction

Placement is one of the most fundamental problems in FPGA design

automation. Given its significance in determining the overall implementa-

tion quality and efficiency, lots of research efforts have been devoted to the

core placement algorithms over the past decades. Among all existing ap-

proaches, analytical placers, which formulate placement as sophisticated con-

tinuous optimization problems, are usually considered to be the most promis-

ing ones. Based on the modeling functions, analytical placers can be divided

into quadratic placers and nonlinear placers.

This chapter is based on the following publications.

1. Wuxi Li, Shounak Dhar, and David Z. Pan. “UTPlaceF: A Routability-Driven
FPGA Placer With Physical and Congestion Aware Packing.” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 37.4 (2018): 869-882.

2. Wuxi Li, and David Z. Pan. “A New Paradigm for FPGA Placement without Explicit
Packing.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2018).

3. Wuxi Li, Yibo Lin, and David Z. Pan. “elfPlace: Electrostatics-based Placement
for Large-Scale Heterogeneous FPGAs.” In Proceedings of the 38th International
Conference on Computer-Aided Design, 2019.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.

11



Quadratic placers approximate the wirelength objective using quadratic

functions [3,12,19,24,25,77,78], which can be efficiently minimized by solving

symmetric and positive-definite (SPD) linear systems through various Krylov-

subspace methods. Since pure-wirelength minimization tends to collapse cells

together, spreading techniques are required for quadratic placers to reduce

cell overlaps. Among all cell spreading techniques, force-directed approaches

have demonstrated the most success. In each placement iteration, a force-

directed spreading technique evenly spreads cells out and uses the resulting

cell positions as anchor points. Then extra spreading forces directing to these

anchor points are applied to help the cell spreading in the next iteration. This

process is repeated until a nearly overlap-free placement is achieved.

Nonlinear placers, on the other hand, approximate placement objectives

using higher-order nonlinear functions [14, 34, 50]. Different from quadratic

placers, nonlinear placers formulate the nonoverlap constraint using differen-

tiable nonlinear functions and solve it together with the wirelength in a unified

objective function. Since high-order nonlinear functions are more expressive

than quadratic ones, nonlinear placers can often outperform quadratic ap-

proaches in solution quality. However, this quality improvement also comes

with longer runtime due to the more expensive nonlinear optimization.

Besides core placement algorithms, there are also various FPGA place-

ment methodologies have been explored in the literature. Figure 1 summarizes

several representative placement methodologies in previous works. In the early

age, Pack-Place-Legalize approaches (the red path), such as [6–8,20,52,58,59,
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Figure 2.1: Representative FPGA placement methodologies.

66, 67], dominate industry and academic research. In this type of flow, the

packing solution is first determined based on logical interconnects, then the

placement and legalization are performed successively to produce a legal so-

lution. Despite the efficiency, Pack-Place-Legalize approaches do not incorpo-

rate placement/spatial information during their packing decision making, thus

are likely to cause poor design quality. Place-Pack-Place-Legalize approaches

(the blue path) then emerged as a remedy to this issue [9, 34, 68]. In such

a flow, a flat initial placement (FIP) is first performed. Then, both logical

and spatial information is considered during the packing stage before the final

placement and legalization. Another category of approaches, namely Place-

SemiPack-Legalize (the orange path), blur the boundary between placement
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and packing [12]. In particular, after an FIP similar to that in Place-Pack-

Place-Legalize approaches, they only group LUTs and FFs into intermediate

clusters (e.g., BLEs). Then, the rest of packing work and the final placement

are combined into a single legalization process.

In this chapter, we propose three new analytical placement engines with

different core algorithms and methodologies:

• UTPlaceF, a quadratic placer with the Place-Pack-Place-Legalize flow.

• UTPlaceF-DL, a quadratic placer with a novel simultaneous packing

and legalization flow, as shown by the green path in Figure 2.1.

• elfPlace, a nonlinear placer that models density constraints using elec-

trostatic systems.

In the rest of this chapter, Section 2.2 introduces the target FPGA

architecture of these three placers. Section 2.3 describes UTPlaceF. Section 2.4

details UTPlaceF-DL, and Section 2.5 presents elfPlace.
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2.2 Target FPGA Architecture

All three placers that will be proposed in this chapter are developed

based on Xilinx UltraScale VU095 [29]. It contains a representative column-

based FPGA architecture that has been also adopted by many other state-

of-the-art commercial FPGAs, e.g., Xilinx UltraScale+ series. As shown in

Figure 2.2(a), each column in this architecture provides one type of logic re-

sources among CLB, DSP, RAM, and I/O. Columns of different resource types

are unevenly interleaved over the FPGA fabric. Figure 2.2(b) details the CLB

structure in this architecture, where each CLB consists of 8 basic logic elements

(BLEs) and each BLE further contains 2 LUTs and 2 FFs. The 2 LUTs in a

BLE can be either implemented as a single 6-input LUT or two smaller LUTs

with a total number of distinct inputs no greater than 5. While FFs in the

same CLB are subject to control set constraints. More specifically, as shown

in Figure 2.2(b), a CLB can be divided into two half CLBs, and each of which

consists of 4 BLEs that share the same clock (CK), set/reset (SR), and clock

enable (CEA/CEB) signals. Therefore, in each half CLB, FFs must share the

same CK/SR and FFs with the same polarity (FFA/FFB) must further share

the same CEs (CEA/CEB).
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Figure 2.2: Illustration of (a) the layout and (b) the configurable logic block
(CLB) structure of Xilinx UltraScale architecture.
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2.3 UTPlaceF: A Packing-Based FPGA Placer

Packing-based methodologies are among the most successful FPGA

placement approaches. In a packing-based placement methodology, the pack-

ing engine is responsible for grouping lookup tables (LUTs) and flip-flops (FFs)

into architectural-legal configurable logic blocks (CLBs). While a placement

engine is dedicated to determining the physical locations of movable cells while

optimizing some cost metrics (e.g., wirelength, routability, timing, and power).

Although the packing-based placement methodologies have been inten-

sively studied in the literature [6–8, 20, 52, 58, 59, 66, 67], existing approaches

still have the following limitations:

• Existing packing algorithms do not have good knowledge of cell physical

locations. Logical packing, which performs packing based only on logical

connectivity, could cluster cells that are physically far apart. As a result,

it may lead to wirelength-unfriendly netlists and worsen routability.

• Existing packing algorithms are unaware of actual congestion informa-

tion, which is crucial for efficient and high-quality packing depopulation.

Blindly applying uniform depopulation would inevitably worsen wire-

length and area, and it is more efficient to only avoid overpacking in

routing congested regions.

In order to remedy these deficiencies, in this section, we propose UT-

PlaceF, a new packing-based FPGA placers that simultaneously optimize wire-

length and routability. Our main contributions are listed as follows.
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• We propose a novel packing algorithm that incorporates accurate phys-

ical information based on a high-quality analytical global placement.

• We propose a routing congestion-aware depopulation technique to effi-

ciently balance wirelength and routability in a correct by construction

manner.

• We propose a hierarchical congestion-aware detailed placement technique

to improve wirelength without degrading routability.

• We perform experiments on the ISPD 2016 routability-driven FPGA

placement contest [79] benchmark suite released by Xilinx. Compared

with the top-3 winners of the contest and other state-of-the-art FPGA

placers, UTPlaceF achieves better routed wirelength with shorter run-

time.

The rest of this section is organized as follows. Section 2.3.1 reviews

the preliminaries and overviews the UTPlaceF framework. Section 2.3.2, Sec-

tion 2.3.3, and Section 2.3.4 give the details of UTPlaceF packing and place-

ment algorithms. Section 2.3.5 shows the experimental results, followed by the

summary in Section 2.3.6.

2.3.1 Preliminaries and Overview

2.3.1.1 Quadratic Placement

A FPGA netlist can be represented as a hypergraph H = (V , E), where

V = {v1, v2, ..., v|V|} is the set of cells, and E = {e1, e2, ..., e|E|} is the set of nets.
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Let x = {x1, x2, ..., x|V|} and y = {y1, y2, ..., y|V|} be the x and y coordinates

of all cells. The wirelength-driven global placement problem is to determine

position vectors x and y that minimize the total wirelength and obey the cell

density constraint. Wirelength is measured by the half-perimeter wirelength

(HPWL),

HPWL(x,y) =
∑

e∈E
{max
i,j∈e
|xi − xj|+ max

i,j∈e
|yi − yj|}. (2.1)

As HPWL is not differentiable everywhere, quadratic placers approximate it

by squared Euclidean distance between cells. Therefore, the wirelength cost

function in quadratic placer is defined as,

W (x,y) =
1

2
xTQxx+ cTxx+

1

2
yTQyy + cTy y + const. (2.2)

2.3.1.2 UTPlaceF Overview

Figure 2.3 shows the flowchart of UTPlaceF. The overall flow is com-

posed of four parts: (1) flat initial placement (FIP); (2) physical- and

congestion-aware packing (PCAP); (3) global placement; (4) legalization and

detailed placement.

The flat initial placement (FIP) is responsible for generating cell phys-

ical locations and detecting cells that are likely to be placed into routing con-

gested regions to better guide packing. In the packing stage (PCAP), LUTs

and FFs are first grouped into BLEs, then BLEs are clustered into CLBs. We

assume that FIP yields the optimal cell relative position and packing should
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Figure 2.3: The overall flow of UTPlaceF.

not perturb it too much. Therefore, PCAP, with cell physical locations in-

formation, forbids long-distance packing and prefers close packing. Similar to

iRAC [67], absorbing small nets is treated as the main objective during the

packing stage of PCAP to reduce channel width and routing demand, which

in turn improves wirelength and routability. Besides considering grouping

connected cells, PCAP also packs unconnected cells based on their physical

locations to further reduce the number of CLBs. By leveraging the routing

congestion information from FIP, PCAP can perform loose packing only for

cells that are likely to be placed into routing hotspots and avoid blindly depop-

ulating throughout the whole netlist for routability enhancement. By using

this congestion-aware depopulation technique, PCAP is able to achieve both

good wirelength and routability.
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Our global placement basically shares the same framework with FIP but

handles CLBs instead of LUTs and FFs. In the detailed placement stage, a

bipartite matching-based minimum-pin-movement legalization is applied first.

Then a hierarchical independent set matching is performed to further reduce

wirelength. To preserve the routability being optimized during the global

placement, white spaces and cells in congested regions are handled specially

throughout the detailed placement stage.

2.3.2 Flat Initial Placement

Wirelength-Driven Placement

Routability-Driven Placement

Netlist

Quadratic Programming
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Global Move
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Figure 2.4: The overall flow of FIP.

Our FIP adopts the main framework of an ASIC placer POLAR 2.0 [47].

Its overall flow is shown in Figure 2.4. In each iteration of the wirelength-driven
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Figure 2.5: HPWL at different steps in FIP of benchmark FPGA-5. (a) All
placement iterations (b) Placement iterations in the routability-driven stage.

placement, a quadratic program is solved followed by the rough legalization

[33] for reducing cells overlaps. Then the density preserving global move [48]

is applied to improve the wirelength of the roughly-legalized placement while

preserving bin densities. A sequence of pure wirelength-driven placement iter-

ations is performed until the gap between the upper-bound wirelength and the

lower-bound wirelength is less than 50%. In the routability-driven placement

stage, after a certain number of placement iterations, a fast global router NC-

TUgr [53] is called for routing congestion estimation, then similar to POLAR

2.0, cells in congested regions are inflated by a small ratio and this inflation

accumulates to the end of FIP. Different from the first stage, DSPs, RAMs,

and I/O blocks are immediately legalized after rough legalization in this stage.

Since sites for these cells are typically discrete and scattered on FPGAs, if we

handle them like LUTs and FFs in rough legalization, they might be far away
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from their legal positions in the final FIP solution. This discrepancy would

introduce inaccuracy of cell relative positions. To eliminate this discrepancy,

UTPlaceF performs an extra legalization step for DSPs, RAMs, and I/Os right

after the conventional rough legalization in the second stage of FIP. By simply

doing this, DSPs, RAMs, and I/Os will use their legal positions as their anchor

points in placement iterations and the discrepancy will be eliminated in the

final FIP solution. The legalization approach here will be further discussed

in Section 2.3.4.2. Figure 2.5(a) illustrates the progression of the placement

solution with respect to HPWL in different steps. A zoomed-in view of the

last few iterations, with the legalization for DSPs, RAMs, and I/Os enabled,

is shown in Figure 2.5(b).

The two objectives of FIP are: (1) generating cell physical locations; (2)

detecting cells that are in routing congested regions. Cell physical locations are

explicitly generated by the wirelength and routability co-optimized placement.

Congestion information associated with cells is implicitly obtained from the

history-based cell inflation. The insight of our cell inflation is to quantify the

possibility of a cell lying in routing congested regions using its area – a larger

cell area indicates a larger possibility of being placed into congested regions.

After FIP, each cell would have a physical location and an area, which indicates

the congestion level associated with it.
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Figure 2.6: Different LUT and FF pairing scenarios. (a) A LUT fan out to
multiple FFs and groups with the closest one. (b) A LUT fan out to one FF
that is far away and the grouping is rejected.

2.3.3 Physical and Congestion Aware Packing

2.3.3.1 Maximum-Weighted Matching-Based BLE Packing

As a BLE in our target FPGA architecture, Xilinx Ultrascale, contains

2 LUTs and 2 FFs, existing VPack-style BLE packing algorithms cannot be

directly applied. To address this new BLE architecture, we propose a two-step

BLE packing algorithm that consists: (1) LUT and FF pairing; (2) LUT-FF

pairs matching.

In PCAP, we apply the LUT and FF pairing in a similar manner to

the BLE packing in VPack. As shown in Figure 2.6, we group each LUT to

the closest FF in its fanout. Besides, any long-distance packing is rejected and

only packing within maximum packing distance of BLE (DU
b ) is allowed. This

step is mainly to make full use of fast connections between LUTs and FFs that

are in the same BLEs.

In the second step, the maximum-weighted matching is used to finalize
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the BLE packing. We build an undirected weighted graph UWG = (V , E),

where each vi in V = {v1, v2, ..., v|V|} is a LUT-FF pair, a single LUT, or a

single FF. E = {e1, e2, ..., e|E|} represents the set of legal mergings. To apply

high-attraction and close packing, we say a merging (i, j) , ∀i, j ∈ V , is legal

if and only if:

• i and j are connected in the netlist.

• Merging i and j into the same BLE does not violate any packing rules.

• The merging attraction is greater than the minimum packing attraction

for BLEs (φLb ).

In the UWG, edge weights are set as merging attractions. The attrac-

tion value for a merging is defined as

φb(i, j) =
(

1− exp
(
γb(di,j −DU

b )
)) ∑

e∈Ei∩Ej

kb
|e| − 1

. (2.3)

where γb is a constant value being experimentally set as 0.2, di,j is the Man-

hattan distance between i and j, DU
b is the maximum packing distance of BLE

which is 4 in PCAP, Ei ∩Ej is the set of nets shared by i and j, |e| is the total

number of pins of net e exposed in the cluster level, and kb is 2 for 2-pin nets

and 1 for other nets.

The first term, 1 − exp(γb(di,j − DU
b )), is a packing distance penalty

factor in the range (−∞, 1 − exp(−γbDU
b )]. This factor is very close to 1 for

mergings with distances much less than DU
b . It drops quickly as di,j approaches
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to DU
b and becomes negative once di,j is greater than DU

b . By using the first

term, short-distance mergings in PCAP are always preferred. The second

term,
∑

e∈Ei∩Ej
kb
|e|−1

, is introduced to reduce the number of nets exposed in

the cluster level, which in turn improves wirelength and routability. With the

second term, merging two clusters sharing more small nets is granted a high

priority and 2-pin nets are given even higher weights by the factor kb = 2. In

PCAP, the minimum packing attraction for BLEs (φLb ) is set to 0 by default.
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Figure 2.7: A simple maximum-weighted cluster matching example.

Figure 2.7 shows a simple cluster matching example. Due to our merg-

ing legality rules, the UWG typically is not connected and consists of many

small connected subgraphs. Mergings in different connected subgraphs are in-

dependent, so PCAP performs a maximum-weighted matching algorithm on

each of these subgraphs and all matched cluster pairs would be merged. The

location of a merged cluster is set as the average location of all cells (LUTs

26



and FFs) it contains and the cluster area is simply the sum of cell areas. Af-

ter each pass of matching and merging, PCAP rebuilds the UWG for clusters

generated from the previous pass and solves the maximum-weighted matching

again for each new connected subgraph until no more legal merging exists.

The pseudo-code of our maximum-weighted matching-based BLE pack-

ing is summarized in Algorithm 1. Each connected subgraph is built by the

function BuildConnUWG from line 14 to line 29. Nodes and edges are added into

the subgraph in a breadth-first search manner through a queue from line 20 to

line 28. When the subgraph stops growing, the maximum-weighted matching

would be performed on the constructed subgraph at line 7 and mergings cor-

responding to the matched edges would be committed to the netlist from line

8 to line 12. The loop of constructing subgraphs, solving maximum-weighted

matching, and committing matched edges are iteratively executed from line 1

to line 13 and stops at line 13 when no more merging can be performed. In

PACP, it is very time-consuming to consider all neighbors of cells incident to

high-degree nets at line 22. So for each cell, we only consider its neighbors

connected by nets with at most 16 pins.

2.3.3.2 Connected CLB Packing with Congestion-Aware Depopu-
lation

After BLE packing, we create a CLB for every single BLE and our

CLB packing is done by successively merging smaller CLBs into larger ones.

CLBs that share common nets are said to be connected. In this stage, only
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Algorithm 1: Maximum-Weighted Matching-Based BLE Pack-
ing

Input : FIP and LUT-FF pairing are done.
Output: BLE-level netlist with external nets reduced.

1 while true do
2 numMatch← 0;
3 status[u]← Untouched, ∀u ∈ V ;
4 foreach s ∈ V do
5 if status[s] 6= Untouched then continue;
6 g ← BuildConnUWG(s);
7 Run maximum-weighted matching on g;
8 foreach matched edge (u, v) ∈ g do
9 c← {u, v};

10 V ← V \ {u, v} ∪ {c};
11 status[c]← Popped;
12 numMatch← numMatch+ 1;

13 if numMatch == 0 then return;

14 Function BuildConnUWG(s):
15 UWG g ← ∅;
16 Queue q ← ∅;
17 Push s into q;
18 status[s]← InQueue;
19 Add s into g;
20 while q is not empty do
21 t← fetch and pop q top;
22 foreach v connected to t do
23 if status[v] 6= Popped and φb(t, v) ≥ φLb then
24 if status[v] == Untouched then
25 Push v into q;
26 status[v]← InQueue;
27 Add v into g;

28 Add edge (t, v, φb(t, v)) into g;

29 return g;

28



connected CLBs mergings are considered.

The BestChoice (BC) clustering [60] is used as our main engine for

connected CLB packing. In BC, attractions of all legal CLB mergings are

calculated first, then the algorithm iteratively merges CLB pairs with the

highest attraction based on a priority queue (PQ). The location and area of a

merged CLB are set as the average location and total area of cells it contains.

After each merging, the legality and attractions of mergings involving the new

CLB are updated accordingly. In PCAP, a connected CLB merging (i, j) is

said to be legal if and only if:

• i and j are connected in the netlist.

• Merging i and j into the same CLB does not violate any packing rules.

• The merging attraction is greater than the minimum packing attraction

for connected CLBs (φLcc).

• The total area of i and j is no greater than the maximum CLB area

(AUc ).

The first three rules are inherited from our BLE packing. The fourth

rule is introduced to avoid overpacking in routing congested regions. Note that

all cell areas used in the fourth rule are from the accumulated cell inflation

in our FIP. As discussed in Section 2.3.2, cells with larger areas indicate a

higher possibility to be placed into routing congested regions. By constrain-

ing the area of each CLB, PCAP would apply loose packing in routing con-
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gested regions, and tight packing in other regions. This congestion awareness

makes PCAP able to achieve a good trade-off between wirelength and routabil-

ity. Figure 2.8 illustrates this congestion-aware depopulation technique where

BLEs with larger areas are in routing congested regions.

BLE

CLB

Tight packing 
Uncongested region

Loose packing 
Congested region

Figure 2.8: Congestion-aware depopulation of PCAP during CLB packing.

The attraction function of connected CLB mergings (i, j) is defined as

φcc(i, j) =
(

1− exp
(
γcc(di,j −DU

cc)
)) ∑

e∈Ei∩Ej

kcc
|e| − 1

. (2.4)

Equation (2.4) is basically a replica of our BLE packing attraction function

defined in Equation (2.3) but differs only by some constant parameters. We

experimentally set γcc to 0.2, set DU
cc to 6, and set kcc to 2 for 2-pin nets and

1 for other nets. The minimum packing attraction for connected CLBs (φLcc)

is set to 0.1 and the maximum CLB area (AUc ) is set as 1.8 times the average

CLB area by default.

Our BC-based connected CLB packing algorithm has several major
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Figure 2.9: Merging a pair of clusters A and D, where dB,C = 1, γcc = 0.2,
DU
cc = 6. (a) Before merging A and D, φcc(B,C) ≈ 0.211. (b) After merging

A and D, φcc(B,C) ≈ 0.316.

differences compared with the traditional BC clusterings. In traditional BC, a

speedup technique called lazy update [60] is widely adopted and this technique

relies on the observation that the vast majority of attraction updates decrease

their ranking in the PQ. However, this observation does not apply to our

packing algorithm. Figure 2.9 shows a simple example. Before merging clusters

A and D, B and C only share a 4-pin net. After the merging, the 4-pin net

becomes a 3-pin net in the cluster-level netlist, as a result, the attraction

between B and C increases due to the second term in Equation (2.4). We can

see that this type of attraction increases can happen to any cluster pairs that

share nets with more than 3 pins and all attraction updates in our BC-based

connected CLB packing would increase their ranking in the PQ. Therefore, the

lazy update cannot be adopted here. To guarantee the globally best merging

candidate can always be fetched in each iteration, instead of only considering

the best neighbor for each cluster in the traditional BC, we push all possible

mergings for each cluster into the PQ and dynamically update all merging
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attractions affected by each committed merging.

Algorithm 2: BC-based Connected CLB Packing

Input : BLE packing is done.
Output: CLB-level netlist with external nets reduced. Cells in

routing congested regions are not overpacked.
1 Priority queue PQ← ∅;
2 valid[u]← true, ∀u ∈ V ;
3 foreach u ∈ V do
4 foreach v connected to u do
5 if φcc(u, v) ≥ φLcc then
6 Push (u, v, φcc(u, v)) into PQ

7 while PQ is not empty do
8 (i, j, φcc(i, j))← fetch and pop PQ top;
9 if valid[i] and valid[j] then

10 m← {i, j};
11 V ← V \ {i, j} ∪ {m};
12 valid[i], valid[j]← false;
13 valid[m]← true;
14 foreach k connected to m do
15 if φcc(k,m) ≥ φLcc then
16 Push (k,m, φcc(k,m)) into PQ

17 foreach net e shared by i and j do
18 foreach (p, q, φpqcc ) such that that p and q share e do
19 if valid[p] and valid[q] then
20 Update the ranking of (p, q, φcc(p, q)) in PQ;

The pseudo-code of our BC-based connected CLB packing is summa-

rized in Algorithm 2. Initially, all legal merging candidates are pushed into a

PQ from line 3 to line 6. In each iteration, the merging candidate with the

highest attraction is popped from the top at line 8 and is committed to the

netlist from line 10 to line 11. New merging candidates involving the new

cluster are pushed into the PQ from line 14 to line 16. All attractions that
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are affected by the new merging are updated from line 17 to line 20. The loop

from line 7 to line 20 keeps executing until no more merging candidates exist

in the PQ. Similar to our BLE packing, we ignore nets that have more than

16 pins in Algorithm 2 at line 4 and line 14 to speed up the runtime.

2.3.3.3 Size-Prioritized K-Nearest-Neighbor Unconnected CLB
Packing

CLBs without common nets are said to be unconnected. After con-

nected CLB packing stage, unconnected CLB mergings are considered. Differ-

ent from connected CLB packing, in which reducing external nets is the main

objective, unconnected CLB packing aims at reducing the number of CLBs.

BC-based approaches typically can produce very good packing solutions

for given attraction functions. However, they have an inherent drawback –

the inability of making tight packing. Generally, BC would generate a large

number of medium-sized clusters that are difficult to merge further due to

the cluster capacity constraint. To mitigate this issue, we proposed a size-

prioritized BC-based unconnected CLB packing. By assigning higher priority

to mergings producing larger CLBs, medium-sized CLBs would grow quickly.

As a result, much tighter packing solutions can be achieved.

Unlike the connected CLB packing in Algorithm 2, where all merging

candidates are in a single PQ, we have a separate PQ for each merging size

in the unconnected CLB packing. In other words, merging candidates are

separated by the number of BLEs in their resulting CLBs, and only mergings
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resulting in the same BLE count can be placed in the same PQ. The PQ

corresponding to the largest merging size is granted the highest priority and

always be processed first.

Within each PQ, BC-based unconnected CLB packing is performed in

a manner similar to our connected CLB packing. For a CLB, however, instead

of considering all its connected CLBs, its K-nearest neighbors (in terms of

physical distances) within distance DU
uc are considered in our unconnected CLB

packing. Besides, a different attraction function defined in Equation (2.5) is

used.

φuc(i, j) = 1− exp
(
γuc(di,j −DU

uc)
)
. (2.5)

The attraction function φuc is a packing distance penalty factor similar to

the first terms of Equation (2.3) and Equation (2.4). In UTPlaceF, we set

γuc to 0.2, set DU
uc to 8, and set K to 30 by default. Note that, although

the objective of our unconnected CLB packing is to reduce the number of

CLBs and deliver tight packing, the congestion-aware depopulation technique

described in Section 2.3.3.2 is still applied in this stage to maintain good

routability.

The pseudo-code of our size-prioritized K-nearest-neighbor uncon-

nected CLB packing is summarized in Algorithm 3. Initially, all merging

candidates are pushed into a PQ array (pq[∗]) from line 2 to line 4. The

merging candidates of each cluster are added by the function AddKNN from line

21 to line 27. In each iteration, among all non-empty PQs in pq[∗], the one

corresponding to the largest merging size is fetched at line 6. The merging
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candidate with the highest attraction in the fetched PQ is popped from the

PQ top at line 7 and is committed to the netlist from line 9 to line 10. New

merging candidates that include the new cluster are pushed into pq[∗] by the

function AddKNN at line 14. Line 15 to line 20 guarantee that each cluster has

merging candidates in pq[∗] if legal merging exists. The loop from line 5 to

line 20 keeps executing until no more merging candidates exist in pq[∗].

For high-utilization designs, our default unconnected CLB packing

might still not be able to generate tight enough packing solutions that satisfy

the FPGA capacity constraint. In this case, the existing packing solution will

be ripped up, and new connected and unconnected CLB packing parameters

will be adjusted to generate a tighter packing solution in the next packing pass.

PCAP iteratively performs this rip-up and repacking loop until the FPGA ca-

pacity constraint is satisfied. The details of this rip-up and repacking phase

will be further discussed in Section 2.3.3.4.

2.3.3.4 Net Reduction and Packing Tightness Trade-off

Our connected CLB packing works effectively for reducing the number

of external nets. However, it often produces relatively loose packing solutions

due to the inherent shortcoming of BC mentioned in Section 2.3.3.3. On the

other hand, our unconnected CLB packing is capable of aggressively reducing

the number of CLBs and achieving tight packing solutions. Therefore, if more

packing is performed in the connected CLB packing stage, a loose packing so-

lution with less external nets would be produced. However, if we only perform
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Algorithm 3: Size-Prioritized K-Nearest-Neighbor Uncon-
nected CLB Packing

Input : Connected CLB packing is done.
Output: CLB level netlist with the total number of CLBs

reduced. Cells in routing congested regions are not
overpacked.

1 pq[k]← ∅, ∀k ∈ 2, 3, ..., N ;
2 valid[u]← true, ∀u ∈ V ;
3 numMerging[u]← 0 ∀u ∈ V ;
4 foreach u ∈ V do AddKNN (u);
5 while ∃k ∈ 2, 3, ..., N : pq[k] 6= ∅ do
6 PQ← pq[k] where pq[k] 6= ∅ and pq[j] == ∅ ∀j ∈ k+ 1, ..., N ;
7 (i, j, φuc(i, j))← fetch and pop PQ top;
8 if valid[i] and valid[j] then
9 m← {i, j};

10 V ← V \ {i, j} ∪ {m};
11 valid[i], valid[j]← false;
12 valid[m]← true;
13 numMerging[m]← 0;
14 AddKNN (m);
15 foreach u ∈ {i, j} do
16 foreach v such that (u, v, φuc(u, v)) ∈ pq[∗] do
17 if valid[v] then
18 numMerging[v]← numMerging[v]− 1;
19 if numMerging[v] == 0 then
20 AddKNN (v)

21 Function AddKNN(u):
22 foreach v such that du,v ≤ DU

uc (sorted by du,v) do
23 if φuc(u, v) ≥ φLuc then
24 Push (u, v, φuc(u, v)) into pq[numBLE(u ∪ v)];
25 numMerging[u]← numMerging[u] + 1;
26 numMerging[v]← numMerging[v] + 1;
27 if numMerging[u] == K then return;
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a small amount of packing in the connected CLB packing stage and leave most

of the work to our unconnected CLB packing, the final packing solution would

be more inclined to the “tight” side with more external nets.

In PCAP, the minimum connected CLB packing attraction (φLrc) and

the maximum unconnected CLB packing distance (DU
uc) are used to control the

amount of packing work for each (connected/unconnected) CLB packing stage.

Initially, φLrc is set as 0.1 to aggressively reduce the number of external nets,

and DU
uc is set as 8 to only allow close packing in unconnected CLB packing

stage. This initial setting typically results in a loose packing with a large

amount of net reduction. For high-utilization designs, however, the packing

solution generated by the initial setting could be sparse to the extent that the

number of CLBs exceeds the FPGA capacity. In this case, PCAP will discard

the existing CLB packing solution (but respect the BLE packing solution) and

perform a repacking step, which applies our connected and unconnected CLB

packing again. In the repacking phase, however, φLrc is increased to reduce

the amount of connected CLB packing and DU
uc is also increased to allow

longer-distance unconnected CLB packing. As a result, the repacking step

can achieve tighter packing but sacrifice net reduction. The repacking step is

repeated until the CLB utilization target is satisfied.

The pseudo-code of our rip-up and repacking is summarized in Algo-

rithm 4. In UTPlaceF, we experimentally set Umax to 0.999, set ∆φLrc to 0.3,

and set βDU
uc

to 1.414.
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Algorithm 4: CLB Packing and Rip-up and Repacking

Input : BLE packing is done. Maximum FPGA CLB utilization
Umax, maximum unconnected CLB packing distance
increasing rate βDU

uc
, and minimum connected CLB

packing attraction increasing rate ∆φLrc.
Output: The maximum FPGA CLB utilization constraint is

satisfied.
1 while true do
2 Perform connected CLB packing;
3 Perform unconnected CLB packing;
4 if CLB utilization ≤ Umax then return;
5 DU

uc ← DU
uc βDU

uc
;

6 φLrc ← φLrc + ∆φLrc;

7 end

2.3.4 Post-Packing Placement

2.3.4.1 Global Placement

After PCAP, the global placement is performed immediately to further

optimize wirelength and routability. Our global placement shares the same

framework and parameter settings with FIP, but instead of optimizing the flat

LUT/FF netlist, it considers each CLB as a whole. It is an incremental place-

ment using the FIP solution as the starting point to speed up the wirelength

convergence. Since the initial CLB-level placement induced from FIP is more

or less close to the optimal solution, we skip the wirelength-driven phase in

Figure 2.4 and directly apply the routability-driven phase to further reduce the

runtime. To avoid global placement being stuck in the local optimal around

FIP, the weight of pseudo-nets for cell spreading is reduced at the beginning

of our global placement.
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2.3.4.2 Minimum-Cost Bipartite Matching Based Legalization

A notable difference between ASIC and FPGA legalization is that ASIC

standard cells have different dimensions whereas FPGA CLBs have the same

size. Because of this special property, FPGA legalization problem can be for-

mulated as a minimum-cost-maximum-cardinality bipartite matching problem

with pin movement as cost. By solving the corresponding bipartite match-

ing problem, global placement can be legalized with the minimum total pin

movement. However, solving a complete bipartite matching for large designs

is impractical in terms of runtime. To address this problem, we partition

the placement region into a set of uniform rectangle partitions, then apply a

minimum-cost bipartite matching for each partition. To further speed up the

runtime, edges in bipartite graphs are pruned based on Manhattan distance

and are incrementally added when necessary.

Our legalization approach is summarized in Algorithm 5. The place-

ment region is partitioned into a set of uniform rectangle regions at line 1.

For each partition, we put all cells and all unoccupied sites into two sets at

line 3 and line 4. To ensure that each minimum-cost bipartite matching has

enough sites to accommodate all cells, neighbor available sites are added when

necessary from line 5 to line 6. The bipartite graph is constructed at line 7

with all cells as left vertices and all sites as right vertices. Edges between left

vertices (cells) and right vertices (sites) are added from line 11 to line 14 and

the edge pruning based on Manhattan distance is applied at the same time.

The minimum-cost bipartite matching is solved at line 15 and cells are moved
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Algorithm 5: Minimum-Cost Bipartite Matching Based Legal-
ization

Input : Packing and global placement are done. Initial max
displacement Dmax and max displacement increasing
rate ∆Dmax.

Output: Legalized placement with the minimum total pin
movement.

1 Partition the placement region into a set of rectangle regions P ;
2 foreach p ∈ P do
3 L← unlegalized CLBs in p;
4 R← unoccupied sites in p;
5 while |L| > |R| do
6 Add the closest unoccupied site to p into R;
7 Construct a |L| × |R| bipartite graph g;
8 dmin ← 0;
9 dmax ← Dmax;

10 while true do
11 foreach l ∈ L, r ∈ R do
12 if dmin ≤ dist(l, r) < dmax then
13 cost← dist(l, r) · numPins(l);
14 Add edge (l, r, cost) into g;

15 Run minimum-cost bipartite matching on g;
16 if number of matched edges == |L| then
17 foreach matched edge (l, r) do
18 Move l to r’s location;
19 Mark l as legalized;
20 Mark r as unoccupied;

21 return;

22 dmin ← dmax;
23 dmax ← dmax + ∆D;
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to their matched sites from line 16 to line 21. If no feasible solution is found,

the maximum displacement constraint is increased at line 22 and line 23, and

the loop from line 10 to line 23 is repeated. In UTPlaceF, we set partition

width and height to 42 and 60 CLBs, set the initial maximum displacement

Dmax to 4, and set the maximum displacement increasing rate ∆Dmax to 2.

Similar to CLBs, heterogeneous blocks like DSPs, RAMs, and I/Os also have

uniform sizes, so they can be legalized by Algorithm 5 with minor variations

as well.

2.3.4.3 Congestion-Aware Hierarchical Independent Set Matching

The idea of bipartite matching can also be applied to optimize wire-

length. For a given set of legalized cells, a wirelength optimization problem

can be formulated as a minimum-cost bipartite matching with edge weights

as HPWL increase of moving cells to different sites. However, solving this

matching problem cannot guarantee the optimal HPWL improvement, since

the edge weight of a cell depends on the positions of other connected cells in

the same matching set. To overcome this drawback, we adopt the indepen-

dent set matching (ISM) idea from NTUplace3 [13] and only apply matching

within a set of cells that do not share any nets. Besides, white spaces are also

considered in our matching to further increase the solution space that we can

explore.

In UTPlaceF, ISM is hierarchically applied to CLBs, BLEs and LUT

pairs. The main objective of our packing stage (PCAP) is to absorb small nets
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into clusters (BLEs, CLBs). Therefore, most CLBs essentially are clusters of

LUTs and FFs that have strong connections. One of our key observations is

that moving cells with strong connections together helps to jump out of local

optima in terms of wirelength, so ISM is applied to CLBs first in UPlaceF.

However, even though most CLBs contain strongly connected cells, they are

clustered only based on physical distance and connectivity without any wire-

length awareness. Thus, ISM for BLEs and LUT pairs are also introduced to

improve our CLB packing and BLE packing, respectively, after the CLB-level

ISM.
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Figure 2.10: Illustration of our congestion-aware ISM.

The ISM works effectively for optimizing HPWL. However, it could ruin

the local cell density optimized for routability, especially when spaces are con-

sidered in our ISM. To mitigate this problem, we propose a congestion-aware

ISM with three extra constraints introduced: (1) cells can be moved out of but

not into routing congested regions; (2) spaces can be moved into but not out

of congested regions; (3) moves within congested regions are forbidden. Fig-

ure 2.10 shows a simple matching example with the extra constraints applied.
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To get accurate congestion information, the routing congestion map is updated

after a certain number of ISM iterations. By applying our congestion-aware

ISM, HPWL can be optimized without routability degradation.

The pseudo-code of our congestion-aware ISM is summarized in Al-

gorithm 6. Each independent set is generated at line 2 by the function

BuildIndepSet from line 11 to line 18. The bipartite graph is constructed

from line 3 to line 7. The cost of each edge is calculated by the function

CalcMovingCost from line 19 to line 24 and the three extra routability rules

are applied here as well. The minimum-cost bipartite matching is solved at

line 8 and cells are moved to their matched locations from line 9 to line 10.

This algorithm is sequentially executed for CLBs, BLEs, and LUT pairs to

successively optimize wirelength at different levels. Note that, for the BLE

ISM, the control set legality of CLBs must be preserved, so each independent

set can only contain BLEs belong to the same control set (and may also con-

tain BLEs without control sets). In UTPlaecF, Uth is set to 0.7, Nis is set to

50, and Dis is set to 10 by default.

2.3.5 Experimental Results

UTPlaceF is implemented in C++ and tested on a Linux machine with

3.40 GHz CPU and 32 GB RAM. The benchmark suite released by Xilinx for

the ISPD 2016 FPGA placement contest was used to validate the effectiveness

and efficiency of UTPlaceF. The executable, placement solutions, and bench-

marks are released at the link http://wuxili.net/project/utplacef/.
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Algorithm 6: Congestion-Aware Independent Set Matching

Input : A legal placement. Routing utilization threshold Uth,
maximum independent set size Nis, and maximum
independent set radius Dis.

Output: A legalized placement with shorter wirelength and no
routability degradation.

1 foreach u ∈ V do
2 S ← BuildIndepSet (u);
3 Construct a |S| × |S| minimum-cost bipartite graph g;
4 foreach l ∈ left vertex set of g do
5 foreach r ∈ right vertex set of g do
6 cost← CalcMovingCost (l, r);
7 Add the edge (l, r, cost) into g;

8 Run minimum-cost bipartite matching on g;
9 foreach matched edge (l, r) do

10 Move l to r’s location;

11 Function BuildIndepSet(s):
12 isIndep[u]← true ∀u ∈ V ;
13 foreach u ∈ {s} ∪ {x ∈ V|dist(s, x) ≤ Dis} do
14 if isIndep[u] then
15 S ← S ∪ {u};
16 if |S| ≥ Nis then return S;
17 foreach v connected to u do
18 isIndep[v]← false;

19 Function CalcMovingCost(l, r):
20 if l is a cell and routing utilization at r > Uis then
21 return ∞;
22 if l is a white space and routing utilization at l > Uis then
23 return ∞;
24 return HPWL increase of moving l to r’s location;
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2.3.5.1 Benchmark Characteristics

Table 2.1: ISPD 2016 Placement Contest Benchmarks Statistics

Benchmark #LUT #FF #RAM #DSP #Ctrl Set

FPGA-01 50K 55K 0 0 12
FPGA-02 100K 66K 100 100 121
FPGA-03 250K 170K 600 500 1281
FPGA-04 250K 172K 600 500 1281
FPGA-05 250K 174K 600 500 1281
FPGA-06 350K 352K 1000 600 2541
FPGA-07 350K 355K 1000 600 2541
FPGA-08 500K 216K 600 500 1281
FPGA-09 500K 366K 1000 600 2541
FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 602K 600 500 1281

Resources 538K 1075K 1728 768 N/A

The characteristics of the ISPD 2016 benchmark suite are listed in

Table 2.1. This benchmark suite has cell count ranging from 0.1 to 1.1 mil-

lion, which is much larger than existing academic FPGA benchmarks. Note

that several benchmarks have extremely high cell utilization, which raises two

requirements to FPGA placement packing and placement engines: (1) the

capability of producing tight packing solutions to satisfy the CLB capacity

constraint; (2) the capability of reducing routing resource demand since little

white space is available for cell and routing demand spreading.

2.3.5.2 Comparison with Previous Works

We compare our results with the top-3 winners of the ISPD 2016 place-

ment contest and other state-of-the-art FPGA placers. The results are shown
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Table 2.2: Routed Wirelength (WL in 103) and Runtime (RT in seconds)
Comparison with the Contest Winners

Design
1st Place 2nd Place 3rd Place UTPlaceF

WL RT WL RT WL RT WL RT

FPGA-01 * - 380 118 582 97 357 185
FPGA-02 678 435 680 208 1047 191 642 305
FPGA-03 3223 1527 3661 1159 5029 862 3215 831
FPGA-04 5629 1257 6497 1149 7247 889 5410 824
FPGA-05 10265 1266 † - † - 9660 1237
FPGA-06 6630 2920 7009 4166 6823 8613 6488 1041
FPGA-07 10237 2703 10416 4572 10973 9169 10105 1721
FPGA-08 8384 2645 8986 2942 12300 2741 7879 1686
FPGA-09 † - 13909 5833 † - 12369 2537
FPGA-10 * - * - † - 8795 3182
FPGA-11 11091 3227 11713 7331 † - 10196 2151
FPGA-12 9022 4539 * - † - 7755 2944

Norm. 1.062 1.55 1.116 2.30 1.291 3.10 1.000 1.00

*: Placement error
†: Unroutable placement

in Table 2.2 and Table 2.3. All routed wirelength is reported by Xilinx Vivado

v2015.4 and the runtime of the contest winners are evaluated on a Linux ma-

chine with 3.20 GHz CPU and 32 GB RAM. The normalized results in the last

row of Table 2.2 and Table 2.3 are based on comparisons with our results, and

only benchmarks that other placers completed are considered in each compari-

son. It can be seen that UTPlaceF achieves the best overall routed wirelength.

On average, UTPlaceF outperforms by 6.2%, 11.6%, 29.1%, 3.7%, 7.3%, and

16.8% in routed wirelength compared with the top-3 contest winners, [39],

RippleFPGA [63], and GPlace [62], respectively. It should be noted that only

UTPlaceF and RippleFPGA are able to produce routable solutions for all 12
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Table 2.3: Routed Wirelength (WL in 103) and Runtime (RT in seconds)
Comparison with State-of-the-Art Academic FPGA Placers

Design
[39] * RippleFPGA [63] GPlace [62] UTPlaceF

WL RT WL RT WL RT WL RT

FPGA-01 385 215 363 74 494 30 357 185
FPGA-02 653 399 678 167 903 61 642 305
FPGA-03 3181 1555 3617 1037 3908 289 3215 831
FPGA-04 5504 1289 6037 621 6278 280 5410 824
FPGA-05 10069 1237 10455 1012 † - 9660 1237
FPGA-06 6411 2827 6960 2772 7643 600 6488 1041
FPGA-07 10041 2588 10248 2170 11255 691 10105 1721
FPGA-08 8113 2705 8874 1426 9323 734 7879 1686
FPGA-09 13617 3407 12954 2683 14003 974 12369 2537
FPGA-10 8866 4091 8564 5555 † - 8795 3182
FPGA-11 10835 3267 11226 3636 12368 923 10196 2151
FPGA-12 8246 4625 8929 9748 † - 7755 2944

Norm. 1.037 1.47 1.073 1.61 1.168 0.38 1.000 1.00

* This is the preliminary version of UTPlcaeF that was published in ICCAD
2016.

benchmarks. In terms of runtime, as all placers are evaluated on different

machines, it is not fair to compare them directly. However, we still can see

that the runtime of UTPlaceF is only worse than GPlace and is about 1.5×

to 3.1× faster than other placers.

2.3.5.3 Runtime Analysis

The runtime breakdown of UTPlaceF is shown in Table 2.4. On aver-

age, 55.0% of the total runtime is taken by FIP, while PCAP, global placement,

and hierarchical ISM take 16.2%, 5.1% and 21.4% of the total runtime, respec-

tively, and legalization only takes 1.6% of the total runtime. PCAP is further

divided into three components: BLE packing takes 0.5% of the total runtime,
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Table 2.4: Runtime Breakdown of UTPlaceF

Design FIP
PCAP

GP LG
ISM

Others Total
BLE

Conn Unconn
CLB BLE

LUT
CLB CLB Pair

FPGA-01 115 1 2 3 9 1 5 26 22 1 185
FPGA-02 187 2 4 4 17 1 8 38 42 2 305
FPGA-03 528 5 12 13 58 1 28 57 120 9 831
FPGA-04 500 6 12 17 56 2 33 61 127 10 824
FPGA-05 663 7 13 23 77 3 41 67 136 11 1041
FPGA-06 1029 8 44 171 101 30 49 77 197 15 1721
FPGA-07 974 9 52 195 126 19 54 81 205 16 1731
FPGA-08 1004 9 26 39 91 16 49 174 274 4 1686
FPGA-09 1217 13 100 538 119 41 60 116 314 19 2537
FPGA-10 1343 11 65 1154 95 59 60 148 229 18 3182
FPGA-11 1248 12 50 133 115 23 55 203 308 4 2151
FPGA-12 1720 12 66 279 116 107 54 226 346 18 2944

Norm. 0.550 0.005 0.023 0.134 0.051 0.016 0.026 0.067 0.121 0.007 1.000

connected CLB packing takes 2.3% of the total runtime, and the remaining

13.4% is taken by the unconnected CLB packing. In hierarchical ISM, CLB,

BLE, and LUT-pair ISMs take 2.6%, 6.7%, and 12.1% of the total runtime,

respectively.

2.3.5.4 Effectiveness Validation of Congestion-Aware Hierarchical
Independent Set Matching

To show the effectiveness of our proposed congestion-aware hierarchi-

cal ISM, we compared the routed wirelength of each intermediate placement

solution after different ISM steps. Table 2.5 summarizes the comparison re-

sults. Compared with post-legalization solutions, placements after CLB ISM,

BLE ISM, and LUT-pair ISM are 2.4%, 3.7%, and 5.5% shorter in routed

wirelength, respectively.
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Table 2.5: Routed Wirelength (WL in 103) at Different Stages of the
Congestion-Aware Hierarchical Independent Set Matching

Design LG CLB ISM BLE ISM LUT-pair ISM
WL WL WL WL

FPGA-01 407 394 359 357
FPGA-02 702 677 647 642
FPGA-03 3339 3264 3236 3215
FPGA-04 5603 5484 5433 5410
FPGA-05 9908 9697 9641 9660
FPGA-06 6824 6686 6613 6488
FPGA-07 10500 10322 10253 10105
FPGA-08 8156 7992 7913 7879
FPGA-09 13181 12937 12834 12369
FPGA-10 9916 9633 9285 8795
FPGA-11 10687 10332 10307 10196
FPGA-12 8480 8208 7956 7755

Norm. 1.000 0.976 0.963 0.945

2.3.6 Summary

With the utilization of FPGA designs being pushed to the upper limit,

routability optimization is becoming a fundamental issue in modern physical

design flow for FPGA. In this section, we have proposed a routability-driven

FPGA packing and placement engine called UTPlaceF. A novel packing algo-

rithm, PCAP, and congestion-aware detailed placement techniques for wire-

length and routability co-optimization are proposed. The experimental results

show that UTPlaceF achieves high-quality packing and placement solutions,

which outperform the top-3 winners of the ISPD 2016 placement contest and

other state-of-the-art FPGA placers.
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2.4 UTPlaceF-DL: A New FPGA Placement Paradigm
without Explicit Packing

As we have discussed in Section 2.1 and Section 2.3, the Place-Pack-

Place-Legalize methodology currently dominates the state-of-the-art industrial

FPGA CAD tools [68]. However, by using such a methodology, large discrep-

ancies between the initial placements and the final legal solutions can still be

observed, which implies that metrics (e.g., wirelength, timing, and routabil-

ity) being carefully optimized in initial placements can be ruined in final legal

solutions. The reason is usually twofold. Firstly, most existing initial place-

ment approaches only seek to optimize the objectives without considering the

effect of packing. As a result, large perturbations can be introduced in the

later packing stage, especially for those hard-to-pack designs. Secondly, when

forming a BLE/CLB in the packing stage, its location is typically estimated

by the average location of its containing cells, which, however, can be far away

from its final legal position.

To remedy these deficiencies in previous works, we propose UTPlaceF-

DL, a new paradigm for FPGA placement without explicit packing. In

UTPlaceF-DL, a final legal solution can be achieved directly from an initial

placement by combining the previously separated packing and final place-

ment/legalization steps. Our experiments show that the overall implementa-

tion quality, as well as the correlation between flat initial placements (FIPs)

and final legal solutions, can be significantly improved by using UTPlaceF-DL.

Our major contributions are highlighted as follows:
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• We present a new paradigm, UTPlaceF-DL, for FPGA placement with-

out an explicit packing stage, which is drastically different from the

conventional placement and packing approaches.

• We propose an accurate packing estimation model to incorporate the

effect of packing in the flat initial placement (FIP), which significantly

improves the correlation between FIPs and final legal solutions compared

with the previous state-of-the-art.

• We propose a fully parallelizable direct legalization (DL) technique that

can produce legal solutions straightly from FIPs by simultaneously ex-

ploring the solution spaces of placement and packing.

• UTPlaceF-DL outperforms the winners of the ISPD 2016 contest as

well as three state-of-the-art academic placers UTPlaceF [40], RippleF-

PGA [12], and GPlace [62] in routed wirelength with competitive runtime

on the ISPD 2016 benchmark suite [79].

The rest of this section is organized as follows. Section 2.4.1 formally

defines the problem of direct legalization. In Section 2.4.2, we point out the

inherent challenges of the proposed flow. Section 2.4.3 details our proposed

algorithms. Section 2.4.4 shows the experimental results, followed by the sum-

mary in Section 2.4.5.
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Table 2.6: Notations used in the direct legalization problem

V The set of LUTs and FFs
S The set of CLB slices available on the target FPGA device
x′,y′ The x and y coordinates of cells in V in FIP
x,y The x and y coordinates of cells in V in the final legal solution
zv,s Binary variables that represent if cell v ∈ V is assigned to CLB slice s ∈ S
φ(c) The clustering score of a set of LUTs and FFs c
D The cell maximum displacement constraint

2.4.1 The FPGA Direct Legalization Problem

In UTPlaceF-DL, the direct legalization (DL) is a step that produces a

legal solution directly from an FIP. Given the notations defined in Table 2.6,

the FPGA DL problem can be defined as follows:

max
x,y

∑

s∈S
φ({v ∈ V | zv,s = 1})− λ HPWL(x,y), (2.6a)

s.t.
∑

s∈S
zv,s = 1,∀v ∈ V , (2.6b)

{v | v ∈ V , zv,s = 1} is legal,∀s ∈ S, (2.6c)

|xv − x′v|+ |yv − y′v| ≤ D, ∀v ∈ V . (2.6d)

The objective (2.6a) is to maximize the total clustering score
∑

s∈S φ({v ∈

V | zv,s = 1}) and minimize a wirelength term λHPWL(x,y) normalized by a

positive parameter λ. The clustering score function φ(c) typically captures the

pin/net sharing, timing impact, and so on, within each CLB slice, like attrac-

tion functions used in conventional packing algorithms [58,66,67]. In general,

φ(c) can be customized for different optimization targets. The details of the

objective setting used in our framework will be elaborated in Section 2.4.3.3.4.

The constraint (2.6b) guarantees that each LUT and FF is assigned to exactly
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one CLB slice. The constraint (2.6c) ensures that all the architecture/packing

rules stated in Section 2.2 are satisfied. The maximum displacement con-

straint (2.6d) is introduced to better preserve the FIP. We treat (2.6d) as a

soft constraint since a legal solution may not always exist for a given D.

Unlike previous approaches, our DL formulation guarantees both place-

ment and packing legality while optimizing the objective (2.6a). Besides, the

maximum displacement is explicitly considered. It is, however, much harder

to be dealt with in traditional methods (e.g., packing-based flows).

2.4.2 Challenges of Direct Legalization-Based Flow

Although the DL-based flow has lots of potential merits, there are sev-

eral new challenges come into the field with it.

To achieve a smooth DL process, the flat initial placement (FIP) needs

to be as close as possible to a legal solution. Otherwise, the final legal solution

cannot be obtained with a small placement perturbation. In an FIP, each cell

is associated with an area and the final FIP solution heavily depends on the

cell area assignment. Therefore, a proper cell area assignment is essential for

achieving a reasonably legal FIP. In most of the previous works, cell areas

were set statically based on some empirical estimations [12,62]. However, the

area of a cell should be largely determined by its resource demand, which is,

in fact, determined by its packing solution. For example, if a FF occupies (the

FF portion of) a half CLB slice alone in the final solution due to the control

set conflict, it should be assigned a larger area in the FIP. Considering packing
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Figure 2.11: (a) An area overflow-free placement but with FF demand overflow
(the shaded red region). (b) A legal placement.

solutions are not actually available in FIPs, how to model the effect of packing

in cell area assignment is indeed a challenge.

Another important problem in FIP is how to properly distribute cells

of different types. In quadratic placers, to achieve a roughly-legalized place-

ment, overlap removal techniques (e.g., rough legalization) distribute cells by

evening out area demands throughout the layout. However, an area overflow-

free placement can be far away from a truly legal solution since the area metric

alone cannot capture utilizations of different cell types. This issue can be bet-

ter illustrated in Figure 2.11. Here the LUT and FF area demands (the blue

curve and the red curve) represent the numbers of CLBs required by LUTs

and FFs, respectively, in different locations. The CLB capacity (the lower

dashed line) represents the numbers of CLB slices available in each location,

and the area capacity (the upper dashed line) is the maximum LUT + FF

area constraint used by the placers. In Figure 2.11(a), despite the satisfaction
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of the LUT + FF area constraint, large displacement will still be introduced

in the later legalization step due to the FF demand overflow (the shaded red

region). Figure 2.11(b) gives a legal case where both LUT and FF demands

are lower than the CLB capacity. This issue, of course, can be avoided by

over-constraining the area capacity but at the cost of resource wasting.

To legalize a placement, many previous works adopted Tetris-like ap-

proaches [27]. In such a greedy approach, only one cell/cluster is considered

and legalized at a time, which leads to a narrow solution space exploration.

To explore a broader solution space, however, much more expensive computa-

tional effort is typically required. The scalability issue is even more severe in

the DL-based flow since the flat netlist without any pre-clustering is directly

considered. Therefore, how to explore a sufficiently large solution space while

maintaining good runtime scalability is also a challenge for the DL-based flow.

To sum up, there are several issues discussed in this section that need

to be resolved before we can confidently adopt the DL-based flow. No existing

work has considered these issues, therefore, how to overcome them is a major

challenge of this work.

2.4.3 UTPlaceF-DL Algorithms

2.4.3.1 Overall Flow

The overall flow of UTPlaceF-DL is illustrated in Figure 2.12. The

whole flow starts with a flat initial placement (FIP). Besides the conventional

quadratic program solving and rough legalization, a new dynamic LUT/FF
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Figure 2.12: The overall flow of UTPlaceF-DL.

area adjustment step is performed after each placement iteration. This new

step aims at resolving the two FIP-related issues pointed out in Section 2.4.2.

More specifically, the area of each LUT and FF is dynamically adjusted to

account for the impact of both packing and utilizations of different cell types.

Once the FIP converges to a roughly legal solution, a high-quality legal place-

ment can be straightly produced by the parallel direct legalization, in which

the Formulation (2.6a) – (2.6d) is solved. The detailed placement then con-

ducts further optimization on the legal placement before the final solution is

delivered.

As the centerpieces of this work, the dynamic LUT/FF area adjustment

and the parallel direct legalization techniques will be detailed in Section 2.4.3.2

and Section 2.4.3.3, respectively.
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2.4.3.2 Dynamic LUT/FF Area Adjustment

Since packing and cell utilization calculation are both very local-scoped

operations, it is reasonable to analyze them in a small spatial neighborhood

context for each cell. Additionally, considering that cells of different types

do not affect the packing legality or compete for logic resources against each

other, it is also reasonable to consider each cell type individually from the

perspective of solution legality. Therefore, the area of each cell can be largely

determined based on its spatial neighbors of the same type.

In this section, a cell u is said to be a neighbor of a cell v if u and v have

the same cell type and u falls into the box region (xv−L, yv−L, xv+L, yv+L)

centering at v, where (xv, yv) is the location of v and L is a constant being

empirically set to 5 CLB slices in our framework. In the rest of this section, we

will use Nv to denote the set of neighbors of v, and use N+
v to denote {v}∪Nv.

2.4.3.2.1 Area Updating

To determine a cell area, the following three aspects are considered in our

framework: (1) the cell resource demand; (2) the local resource utilization; (3)

the routability impact. As discussed in Section 2.4.2, the resource demand of

a cell is mainly determined by its packing solution, so the effect of packing

is our major consideration here. Besides, the local resource utilization also

needs to be considered and, as pointed out in Section 2.4.2, this should be

done for different cell types (e.g., LUT and FF) individually. We also take the

routability impact into consideration to avoid over-congested solutions.
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Given a LUT (FF) v, we first define the local LUT (FF) utilization at

v, denoted by Uv, as follows:

Uv =

∑
i∈N+

v
Ai

Cv
, (2.7)

where Cv denotes the number of CLB slices within the box region (xv−L, yv−

L, xv + L, yv + L) that we used to define Nv and Ai denotes the LUT (FF)

resource demand of the cell i. The magnitude of Ai here can also be interpreted

as the degree of difficulty to pack i. The methods to compute Ai for LUTs and

FFs will be detailed in Section 2.4.3.2.2 (Equation (2.9)) and Section 2.4.3.2.3

(Equation (2.10)), respectively.

We then define the new area of v, denoted by av, as follows:

av =





min(a′vβ+, AvUvγv), if AvUvγv > a′v,

max(a′vβ−, AvUvγv), if AvUvγv < a′v and Rv < Rmax,

a′v, otherwise,

(2.8)

where a′v denotes the current area of v, γv ≥ 1 denotes the cumulative inflation

ratio of v for routability optimization, Rv denotes the local routing utilization

at v, and Rmax is an empirically determined constant representing the maxi-

mum routing utilization for area shrinking. Besides, β+ > 1 and β− < 1 are

two parameters to control the rates of area increasing/decreasing.

Intuitively, if a LUT (FF) v is hard to pack (large Av) and is located

in a region with high LUT (FF) utilization (large Uv), as well as high routing

congestion (large γv), its area will be inflated. Otherwise, we will shrink its

area to allow other cells to get in, but only when the region is not routing-
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congested (Rv < Rmax). To achieve a smooth area adjustment, β+ and β−

are set to 1.1 and 0.95, respectively. The γv is cumulatively updated using a

history-based cell inflation technique similar to [12,40]. The routing congestion

is estimated by a fast global router NCTUgr [53], and Rmax is empirically set

to 0.65 in our framework. The impacts of different β+, β−, and Rmax settings

on the solution quality will be further discussed in Section 2.4.4.2.

In UTPlaceF-DL, we perform the rough legalization for LUTs and FFs

together using the same fence regions to maintain the relative order between

them. Considering LUTs and FFs do not occupy the same logic resources,

adjusting their areas directly targeting to their resource demand Av (Equa-

tion (2.9) and Equation (2.10)) can result in low resource usage. This issue

is prevented by scaling Av using the local resource utilization Uv in Equa-

tion (2.8). By doing so, cells in low-utilization regions will be assigned areas

that are much smaller than their actual resource demand to leave spaces for

other cells.

Our dynamic area adjustment technique can effectively mitigate the

“unbalanced resource issue” illustrated in Figure 2.11 and resolve “packing

hotspots” that are harmful to the smoothness of the subsequent direct legal-

ization process. Figure 2.13 shows the LUT/FF utilization (Equation (2.7))

maps of a design with/without this technique when the area constraint is sat-

isfied (see Figure 2.11). It can be seen that, with this technique, a huge FF

hotspot (Figure 2.13(b)) is resolved (Figure 2.13(d)). More interestingly, the

LUTs that are original in the FF hotspot (Figure 2.13(a)) tend to follow the
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(a) (b)

(c) (d)

Figure 2.13: (a) and (b) are the 3-D LUT and FF utilization (Equation (2.7))
maps without our dynamic area adjustment. (c) and (d) are the ones with it
applied. The area constraint is satisfied in both placement solutions. This is
an example of the challenging case illustrated in Figure 2.11. The experiments
are based on design FPGA-10 in the ISPD 2016 benchmark suite [79].

movement of their connected FFs, which results in a “valley” (Figure 2.13(c)).

This is actually an expected behavior since it implicitly preserves the relative

cell ordering, which is important for the placement quality.

2.4.3.2.2 LUT Resource Demand Estimation

Now we present the method to estimate the resource demand (the Ai in Equa-

tion (2.7)) of a LUT, or more precisely, the amount of LUT portion in a CLB

needed by a given LUT. Recall that, in the target device, each CLB contains
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8 BLEs and each BLE can accommodate up to 2 LUTs if they are architec-

turally compatible. Therefore, each LUT can take 1 or 1/2 BLE, which are

equivalent to 1/8 and 1/16 CLB in a compact packing solution. Considering

a packing solution is not yet available in an FIP, a probabilistic estimation

defined in Equation (2.9) is used instead for a LUT v with its neighbors Nv.

A(LUT)
v =

1

16

|N̂v|
|Nv|

+
1

8

|Nv| − |N̂v|
|Nv|

, (2.9)

where N̂v denotes the set of LUTs in Nv that can be fitted into the same BLE

with v. Intuitively, if a LUT is architecturally compatible with most of its

neighbors, its resource demand will tend to be small, otherwise, it will end up

with a larger resource demand.

2.4.3.2.3 FF Resource Demand Estimation

The resource demand (the Ai in Equation (2.7)) estimation for FFs is more

subtle due to their complicated control set rules. Given a FF v, one can,

of course, enumerate all possible packing solutions of N+
v and come up with

a weighted sum similar to Equation (2.9) to get an average-case estimation.

However, this method is too computationally expensive to be practical. In-

stead, we turn to a best-case estimation based on the tightest packing solution,

which can provide us a firm lower bound of the FF resource demand.

For the notation simplicity, here we define every 4 FFs that share the

same (CK, SR, CE) in a CLB slice as a quarter CLB, and define every 8 FFs

that share the same (CK, SR) in a CLB slice as a half CLB. For instance, in
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Figure 2.2(b), the 4 “FF A”s in BLE 0 – 3 is a quarter CLB and the 8 FFs in

BLE 0 – 3 is a half CLB.

An instant observation is that, to produce the tightest packing solu-

tion, FFs with the same control set need to be packed together as much as

possible. Given this observation, our approach to estimating the lower-bound

FF demands can be illustrated by Figure 2.14. Using the (CK, SR) group of

(B, P) in Figure 2.14 as an example, there are 5 and 2 FFs with CE of X and

Z. In the tightest packing solution, at least d5/4e = 2 and d2/4e = 1 quarter

CLBs are required for the control sets (B, P, X) and (B, P, Z). Since any two

of these 2 + 1 = 3 quarter CLBs can be fitted into the same half CLB, there

will be a minimum of d3/2e = 2 half CLBs for the (B, P) group. Considering

the control sets of any two half CLBs are independent, we can safely set the

resource demand of each half CLB as 1/2 (of a CLB). Therefore, the minimum

demand of the (B, P) group will be 1/2 · 2 = 1. After that, we can divide this

demand of 1 into 2/(2 + 1) = 2/3 and 1/(2 + 1) = 1/3 based on the quar-

ter CLB counts in (B, P, X) and (B, P, Z). Finally, the resource demands of

each FF in (B, P, X) and (B, P, Z) can be estimated as 2/3/5 = 2/15 and

1/3/2 = 1/6, respectively, by evenly distributing the demand of 2/3 and 1/3

to 5 and 2 FFs.

To generalize the above discussion, let v be a FF with control set (CK0,

SR0, CE0), and let {CE0, CE1, . . . , CEm} be the set of CE nets in N+
v . If we

denote the number of FFs in N+
v with the control set (CK0, SR0, CEi) as ni,
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#FF 6 11 4 5 2 1
#Quarter CLB

#Half CLB
2 3 1 2 1 1

3 2 1

Est. FF Dem. 1/12 3/44 1/16 2/15 1/6 1/2

A P

X Y Z ZX

B P

Y

B QCK, SR

CE

3/2 1 1/2(CK, SR) Dem.

Figure 2.14: Illustration of FF resource demand estimation.

for 0 ≤ i ≤ m, the estimated FF demand of v can be expressed as follows:

A(FF)
v =

1

2

dn0

4
e∑m

i=0dni

4
e
⌈∑m

i=0dni

4
e

2

⌉ 1

n0

α(FF). (2.10)

Note that our analysis in Figure 2.14 corresponds to the tightest packing, which

realizes the lower bound FF demands. In practice, however, a packing solution

is likely to be looser than that when net sharing and other optimization metrics

are considered. Therefore, we introduce α(FF) ≥ 1 in Equation (2.10) to give

more flexibility to the packing. In our framework, we empirically set α(FF) to

1.1.

If we ignore the α(FF) term, the FF demand estimated by Equa-

tion (2.10) is in the range [1/16, 1/2], which implies that FF demands can vary

up to 8× (e.g., the FF demands of (A, P, Z) and (B, Q, Y) in Figure 2.14). In

a traditional flow, the discrepancy between FIPs and legal solutions is mainly

from their incapability of capturing this large demand variance, as shown in

Figure 2.13. Therefore, our FF demand estimation method detailed in this
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section is essential for the proposed direct legalization-based flow.

It is worthwhile to mention that, although the LUT/FF resource de-

mand estimation elaborated in Section 2.4.3.2.2 and Section 2.4.3.2.3 are spe-

cific to the architecture detailed in Section 2.2, the same idea is also applicable

to other FPGA devices with different architectures.

2.4.3.2.4 Area Adjustment Scheduling

Another important question needs to be answered is when to start the area

adjustment. There is a trade-off between the area estimation accuracy (Equa-

tion (2.9) and Equation (2.10)) and the required area adjustment rates. In

general, the later we start the dynamic area adjustment in the FIP the more

accurate area estimation we can make. However, it also requires faster adjust-

ment rates (larger β+ and smaller β−) to guarantee that cells can converge to

their target areas within the reduced number of adjustment iterations. As will

be discussed in Section 2.4.4.2, a too fast adjustment rate can be harmful to

the placement convergence and quality. Therefore, in the proposed flow, we

choose to start the dynamic area adjustment from the beginning of the FIP

with relatively slow adjustment rates β+ = 1.1 and β− = 0.95.

2.4.3.3 Fully Parallelizable Direct Legalization

Our direct legalization (DL) takes a roughly-legalized FIP and produces

a legal solution by solving the Formulation (2.6a) – (2.6d). The idea is partially

similar to the clustering algorithms in [57, 68], but we are aiming at a legal
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placement directly. Besides, the cell displacement is explicitly considered in

our formulation. Compared with traditional greedy methods, our method

can explore a significantly larger solution space by exploiting the strength of

parallelism.

2.4.3.3.1 A College Admission Analogy

The proposed DL algorithm is inspired by the College Admission Problem [23].

One can think that each CLB slice is a “college”, each cell is a “student”,

and cells sharing common nets are “friends”. Then, DL can be regarded

as a process of colleges admitting students. By using this analogy, the DL

process is fully parallelizable in nature in the sense that all colleges can make

decisions simultaneously. Our DL formulation, however, is more complicated

than the original college admission problem for the following two reasons: (1)

a student (cell) rates a college (slice) not only based on the college (slice) itself

but also depending on the decision making of its friends (connected cells);

(2) some students (cells) cannot be in the same college (slice) for the FPGA

architectural legality.

2.4.3.3.2 The Node-Centric Algorithm

The key idea of our DL algorithm is that each slice finds the cluster of cells that

fits it best, then offers this cluster to all the cells involved. The “admission”

happens when all the cells in this cluster accept this “offer”. The process of

sending and accepting/rejecting “offers” between slices and cells is iteratively
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performed until no potential “admission” could happen anymore. Different

slices here can create cluster candidates and make their own decisions inde-

pendently. Moreover, a cluster can be simultaneously created and considered

by multiple slices, which implicitly explores the solution space of placement

together with packing. This elegant property overcomes the drawback of all

existing methods, where placement and packing cannot be considered at the

same time.

In our DL algorithm, the computation is mainly centered at each slice.

Thus, we call each slice as a computation node and each computation node

can run in parallel against each other.

The node-centric DL algorithm flow at each computation node is shown

in Figure 2.15. Each computation node maintains a set of cells that have been

determined in the slice (det), a priority queue of cluster candidates (pq), a

set of neighbor cells (nbr), and a list of seed clusters (scl) for new candidate

generation. The pq stores the K best clusters found so far at each computation

node and we use K = 10. Clusters are created by adding cells in nbr into seed

clusters in scl in our algorithm. Besides, a variable i is also maintained by each

computation node to record the number of iterations since the last change of

the best candidate in pq. We will use pq.top() to denote the best candidate in

a pq. Before the DL starts, for each computation node, we initialize i to 0, set

det and pq to ∅, initialize nbr as the set of cells within a predefined distance

d (default is 1) to the slice, and make scl to contain an empty cluster without

any cells.

66



Begin of an iteration

i ≥ I and pq.top()
is accepted by
all cells in it?

Remove invalid
candidates in pq

Remove invalid cells in nbr

det = pq.top();
pq = ∅;

scl = {det}

|nbr| < NNBRmin

and d < D?

d′ = min(d + ∆d,D);
Add cells within

range (d, d′] into nbr ;
d = d′

scl = all candidates in pq

Add each valid new
candidate i ∪ j,∀i ∈
nbr,∀j ∈ scl, into pq

scl = new candidates in pq

i =

{
0, if pq.top() changes

i + 1, otherwise

Broadcast pq.top()
to cells in it

End of an iteration

Yes No

Yes No

Figure 2.15: The node-centric DL algorithm flow at each computation node
(CLB slice).

In every DL iteration, as shown in Figure 2.15, each computation node

first checks if its pq.top() (the best candidate in pq) can be committed into

the slice. The pq.top() will be committed only if it has been stable for a long

enough time (i ≥ I) and it has been accepted by all the cells in it. I is set

to 3 in our algorithm to prevent committing premature candidates. Once the

pq.top() is valid to commit, we will update det as pq.top() and reset pq. To
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guarantee that all subsequent candidates contain the set of determined cells

det, scl is set to only have det after each pq.top() committing.

If the pq.top() is not yet ready to commit, invalid candidates and cells

will be removed from pq and nbr. A cell can become invalid if it has been

added to another slice or it is no longer architecturally compatible with det.

A cluster becomes invalid if one or more cells in it are invalid. After that,

if there are too few available cells in nbr (|nbr| < NNBRmin), the current

maximum cell displacement constraint d will be relaxed by ∆d, and more

neighbor cells will be added to guarantee a large enough solution space that

we can explore. Besides, we will also copy all candidates in pq to scl to ensure

that they can be considered by these newly added neighbor cells. To honor

the ultimate maximum displacement constraint D, we will stop increasing d

when it reaches D. NNBRmin, ∆d, and D are set to 10, 1, and 12, respectively,

in our algorithm.

To create new cluster candidates, we add each cell in nbr into each

cluster in scl. Those valid new candidates will be added into pq. Meanwhile,

we also store them in scl for the candidate generation in the next DL iteration.

After that, i will be increased by 1 if pq.top() does not change, otherwise, we

reset it to 0.

Finally, the computation node broadcasts its pq.top() to all involved

cells and let each of them make a decision. The decisions of these cells will

determine if this pq.top() can be committed in the next DL iteration.
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After all computation nodes finish their broadcasting, a cell may receive

multiple “offers” from a set of different slices S. In such a case, the cell will

select the slice s ∈ S with the highest score improvement ∆SCORE(s). The

score improvement of a slice s is defined as

∆SCORE(s) = SCORE(s.pq.top(), s)− SCORE(s.det, s), (2.11)

where SCORE(c, s) represents the score of cluster c in slice s and it will be

given in Section 2.4.3.3.4. Intuitively, ∆SCORE(s) is the amount of score

improvement by committing the pq.top() in slice s.

Algorithm 7: Fully Parallelizable Direct Legalization

Input : A roughly-legalized placement, the set of cells C, the set
of slices (computation nodes) S, and the initial
maximum displacement constraint d.

Output: A legal placement.
1 parallel foreach s ∈ S do
2 s.i← 0;
3 s.det← ∅;
4 s.pq← ∅;
5 s.nbr← {c ∈ C | dist(c, s) ≤ d};
6 s.scl← {an empty cluster};
7 while exists valid pq.top() for s ∈ S do
8 parallel foreach s ∈ S do
9 Run the node-centric algorithm shown in Figure 2.15;

10 parallel foreach c ∈ C do
11 Among {s ∈ S | c ∈ s.pq.top()}, pick s∗ that

has the highest ∆SCORE(s∗) defined in Equation (2.11)
and inform s∗ that c accepts its pq.top();

Algorithm 7 summarizes the whole fully parallelizable DL process. All

computation nodes are initialized in parallel from line 1 to line 6. In each
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DL iteration, the node-centric algorithm presented in Figure 2.15 is executed

by each slice individually from line 8 to line 9. After that, each cell receives

“offers” from slices with pq.top() containing it, and it picks the one with the

highest score improvement ∆SCORE (Equation (2.11)) and informs its accep-

tance to the selected slice from line 10 to line 11. The loop from line 7 to line

11 is repeated until no more valid candidate exists.

2.4.3.3.3 Convergence Requirement

In general, a valid pq.top() may never be accepted by all the cells in it. In

such a case, our DL algorithm will fall into an infinite loop. To guarantee the

convergence of the algorithm, an extra requirement is imposed as stated in

Lemma 2.4.1.

Lemma 2.4.1 Suppose s1 and s2 are two different computation nodes (slices).

If ∆SCORE(s1) 6= ∆SCORE(s2) holds for any choice of s1 and s2 in the same

DL iteration, the convergence of the proposed DL algorithm is guaranteed.

Lemma 2.4.1 basically requires a tie-breaking mechanism for the case that mul-

tiple computation nodes offer the same score improvement (Equation (2.11))

to a set of cells. In our implementation, a tie is broken based on the unique

identifier of each computation node since a cell can receive at most one “offer”

from a computation node in each iteration.
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2.4.3.3.4 Score Function

Since our DL explores the solution spaces of placement and packing simultane-

ously, the score function needs to capture both placement- and packing-related

metrics. Given a slice s and a cluster c, the score of c in s is defined as follows:

SCORE(c, s) =
∑

e∈Net(c)

InternalPins(e, c)− 1

TotalPins(e)− 1
− λ∆HPWL(c, s), (2.12)

where Net(c) denotes the set of nets that have at least one cell in c,

TotalPins(e) denotes the total pin count of net e, InternalPins(e, c) repre-

sents the number of pins of net e in c, and ∆HPWL(c, s) represents the

HPWL increase of moving cells in c from their FIP locations to s. λ is a pos-

itive weighting parameter, which is empirically set to 0.02 in our algorithm.

The first term defines the clustering score φ(c) in Equation (2.6a) and it here

grants a higher score to clusters that absorb more external nets as internal

ones, which can effectively reduce routing demands and improve routability.

The second term gives a higher preference to candidates that lead to a large

wirelength reduction.

2.4.3.3.5 Parallelization Scheme

As illustrated in Algorithm 7, our DL algorithm is massively parallelizable.

Like colleges independently making decisions in the analogy of college admis-

sion (Section 2.4.3.3.1), different computation nodes (slices) can execute the

flow illustrated in Figure 2.15 perfectly in parallel in each DL iteration (Algo-
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rithm 7 line 8 to line 9). Moreover, cells can also process the results generated

by slices and send back their decisions individually (Algorithm 7 line 10 to line

11).

Since the number of slices and cells in a modern FPGA is typically at

the scale of 104 or more (e.g., our target FPGA contains 67K slices), a fine-

grained parallelization with even tens of threads is potentially viable in our DL

algorithm. Our experiments in Section 2.4.4.3 demonstrates the nearly-linear

runtime scalability of our DL algorithm with respect to the number of threads.

This extreme parallelizability can further facilitate efficient implementations

of our DL algorithm on hardware accelerators, like FPGAs and GPUs.

Another strong property of our DL algorithm is its serial equivalency.

Serial equivalency is a property to guarantee that a parallel algorithm always

produces exactly the same solution as its serial version does. That is, our

DL algorithm guarantees to produce the same solution, regardless of the num-

ber of threads used. Therefore, we can enable as much as available parallel

computational resources without sacrificing the quality of results.

2.4.3.3.6 Post-DL Exception Handling

Although the convergence of our DL algorithm can be guaranteed by

Lemma 2.4.1, after the regular DL process described in Algorithm 7, a small

portion (typically < 1%) of cells may still not be able to find legal positions

within a given maximum displacement constraint D. To legalize these remain-

ing cells, one can, of course, keep relaxing D until a legal solution is reached,
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like a Tetris-based legalizer [27]. However, this approach can result in a huge

displacement. Instead of Tetris-based approaches, we choose to rip up some al-

ready determined clusters and reallocate these ripped cells together with those

originally illegal ones to produce a legal solution. Since our FIP is nearly legal,

this method is likely able to find a legal solution with very little placement

perturbation.

One of the key questions here is which cluster to break. For an illegal

cell v and a slice s with its determined cluster c, we first define the score of

breaking c in s for v as

SCOREripup(v, s, c) = −λ1 ∆HPWL(v, s)− λ2 SCORE(c, s)− λ3 Area(c),

(2.13)

where ∆HPWL(v, s) denotes the HPWL increase of moving v to s, SCORE(c,

s) denotes the score of c in s as defined in Equation (2.12), and Area(c)

represents the total cell area (from FIP) in c. λ1, λ2, and λ3 are three positive

weighting parameters. In our experiments, we empirically set them to 0.02,

1.0, and 4.0, respectively. Intuitively, we prefer to move v to a low-score slice

with little wirelength increase. The Area(c) term is introduced to evaluate if

the ripped cells are easy to legalize. If c has a large area, it either contains

many cells or the cells it contains are hard to pack (recall Equation (2.9) and

Equation (2.10)). For both cases, we tend to not break it.

Algorithm 8 summarizes our post-DL exception handling technique

that legalizes illegal cells after the regular DL process (Algorithm 7). In the
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Algorithm 8: Post-DL Exception Handling

Input : A post-DL placement with the set of illegal cells C ′, the
set of all cells C, the set of all slices S, and the maximum
displacement constraint D.

Output: A legal placement.
1 foreach c ∈ C ′ do
2 D(c) ← D;

3 while Legalize (c,D(c)) is fail do
4 D(c) ← D(c) + 1;

5 Function Legalize(c, D):
6 ls(c) ← {s ∈ S | dist(c, s) ≤ D};
7 Sort slices in ls(c) by their SCOREripup defined in

Equation (2.13) in descending order;

8 foreach s ∈ ls(c) do
9 if RipUpAndLegalize (s, c,D) is success then

10 return success;

11 return fail;

12 Function RipUpAndLegalize(s, c,D):
13 lv ← {v ∈ C | v ∈ s.det};
14 s.det← {c};
15 foreach v ∈ lv do
16 ls(v) ← {s ∈ S | dist(v, s) ≤ D and s.det ∪ v is legal};
17 if ls(v) is ∅ then
18 Remove c from s.det ;
19 Put all v ∈ lv back to s.det ;
20 return fail;

21 else
22 Pick s∗ ∈ ls(v) with the highest SCORE(s∗.det ∪ v, s∗)

− SCORE(s∗.det, s∗);
23 s∗.det← s∗.det ∪ v;

24 return success;
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main loop (line 1 to line 4), each illegal cell c is legalized with the maximum dis-

placement constraint D(c) using the function Legalize(c,D(c)). For each c, we

set the initial displacement constraint as D (line 2), and incrementally relax it

(line 4) if a legal solution cannot be found. To legalize an illegal cell c with dis-

placement constraint D using Legalize(c,D) (line 5 to line 11), we first collect

the set of slices ls(c) that are within distance D w.r.t the location of c in FIP

(line 6). Then we sort all slices in ls(c) by their SCOREripup defined in Equa-

tion (2.13) in descending order (line 7). After that, we try to rip up s ∈ ls(c)

one by one and legalize c using the function RipUpAndLegalize(s, c,D) un-

til the legalization successes (line 8 to line 10). If c cannot be legalized by

breaking any slice in ls(c), Legalize(c,D) will return fail (line 11) and the

displacement constraint will be relaxed in the main loop (line 3 to line 4).

The details of the function RipUpAndLegalize(s, c,D) are given in line

12 to line 24. The goal of this function is to break s.det and legalize c as

well as the cells in s.det under the displacement constraint D. We first rip up

s.det and put c alone into it (line 14). Then, the cells that are originally in

s.det are legalized sequentially in the loop from line 15 to line 23. For each

such a cell v, we first collect the set of slices (ls(v)) that are within distance

D (w.r.t the location of v in FIP) and have their det compatible with v (line

16). If no such slice exists, we discard all the changes that have been made

in this function call (line 18 to line 19) and return fail (line 20). Otherwise,

among all candidate slices (ls(v)), we pick the one with the highest score gain

SCORE(s∗.det ∪ v, s∗) − SCORE(s∗.det, s∗) and put v into it (line 22 to line
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23). The function call successes only when all cells that are originally in s.det

can find legal positions within displacement D (line 24).

2.4.4 Experimental Results

Table 2.7: ISPD 2016 Contest Benchmarks Statistics

Design #LUT #FF #RAM #DSP #Ctrl Set

FPGA-01 50K 55K 0 0 12
FPGA-02 100K 66K 100 100 121
FPGA-03 250K 170K 600 500 1281
FPGA-04 250K 172K 600 500 1281
FPGA-05 250K 174K 600 500 1281
FPGA-06 350K 352K 1000 600 2541
FPGA-07 350K 355K 1000 600 2541
FPGA-08 500K 216K 600 500 1281
FPGA-09 500K 366K 1000 600 2541
FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 602K 600 500 1281

Resources 538K 1075K 1728 768 -

We implement UTPlaceF-DL in C++ based on UTPlaceF [40] and per-

form the experiments on a Linux machine running with Intel Core i9-7900X

CPUs (3.30 GHz, 10 cores, and 13.75 MB L3 cache) and 128 GB RAM.

OpenMP 4.0 [2] is used to support multi-threading. The benchmark suite

released by Xilinx for the ISPD 2016 FPGA placement contest [79] is used

to validate the effectiveness of the proposed approaches. All the routings are

conducted by Xilinx Vivado v2015.4 [72]. The characteristics of the ISPD 2016

benchmark suite are listed in Table 2.7.
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2.4.4.1 Effectiveness Validation of Proposed Techniques

Table 2.8 demonstrates the effectiveness of the proposed dynamic area

adjustment (DAA) and direct legalization (DL) techniques. Here we compare

four different placement methodologies, as listed in the four columns. The

column “UTPlaceF” represents the original UTPlaceF [40] flow. The column

“UTPlaceF + DAA” applies DAA on top of the original UTPlaceF. The col-

umn “UTPlaceF-DL” employs both DAA and the proposed DL by replacing

the packing, CLB-level placement, and legalization subroutines in “UTPlaceF

+ DAA” flow with the proposed DL. To further demonstrate the effectiveness

of the proposed DL, we also implement a greedy Tetris-based direct legal-

ization (greedy DL) for comparison. This greedy DL adopts the same score

function Equation (2.12) used by the proposed DL, and it legalizes one cell at

a time to maximize the score improvement defined in Equation (2.11). The

results of substituting the proposed DL in “UTPlaceF-DL” with this greedy

DL are shown in the column “DAA + Greedy DL”. Metrics “WL” and “RT”

represent the routed wirelength and runtime, while “WLR” and “RTR” rep-

resent the wirelength and runtime ratios normalized to the “UTPlaceF-DL”

column. Note that these four flows share the same underlying global and de-

tailed placement engines, therefore noises from parts that are irrelevant to this

work can be completely decoupled in this comparison.

It is worthwhile to mention that the proposed DL should not be applied

without DAA since this can result in very suboptimal or even illegal solutions.

In the proposed DL, all cells simultaneously seek to legalize themselves. With-
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out DAA, however, the FIP solution can be greatly far away from a truly legal

placement, and in this case, a significant portion of cells can fail to find nearby

legal positions. Therefore, we always employ the proposed DL together with

the DAA technique in our experiments.

In this experiment, we enable 16 threads for our DL algorithm due to

its parallel nature, and all other parts (global/detailed placement) are single-

threaded. While the UTPlaceF is universally executed with a single thread

for the following two reasons: (1) the packing and legalization algorithms in

UTPlaceF are inherently sequential and hard to be parallelized without quality

degradation or extra threading communication overhead; (2) the packing and

legalization in UTPlaceF only take about 15% of the total runtime on average,

therefore, the overall performance gain would be still limited even if they have

been carefully parallelized.

We first compare the columns “UTPlaceF” and “UTPlaceF + DAA”,

where the only difference is whether or not DAA is applied. On average,

“UTPlaceF + DAA” achieves 1.4% better routed wirelength with only 5%

runtime overhead compared with “UTPlaceF”. The reason is that, with DAA

applied, the FIP solution can be considerably closer to a truly legal solution

due to its packing effect consideration. This can be further proved by the

experimental results shown in Table 2.9, which we will discuss in details later

in this section.

We then compare the columns “UTPlaceF + DAA” and “DAA +

Greedy DL” with “UTPlaceF-DL” to demonstrate the effectiveness of the
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proposed DL. These three methodologies share the same FIP solutions and

only differ by their packing and legalization steps. As can be seen, on average,

“UTPlaceF-DL” outperforms “UTPlaceF + DAA” and “DAA + Greedy” by

3.0% and 6.0%, respectively, in routed wirelength. It should be noted that

“UTPlaceF-DL” outperforms “DAA + Greedy DL” on all twelve benchmarks

in routed wirelength with only 7% longer runtime. Therefore, compared with

the Pack-Place-Legalize methodology in “UTPlaceF + DAA” and the greedy

DL, the proposed DL algorithm can effectively explore a larger solution space

and achieves better solution quality.

By comparing the columns “UTPlaceF-DL” and “UTPlaceF”, we can

see that, with both DAA and DL employed, the proposed flow outperforms

the original UTPlaceF by 4.4% in routed wirelength, while runs 1.24× faster.

It is worthwhile to mention that, among all the designs, FPGA-10 contains the

largest number of control sets and flip-flops, which make it severely difficult

to pack and legalize. On this particular design, UTPlaceF-DL outperforms

UTPlaceF by 29.5% in routed wirelength. Besides, UTPlaceF-DL also consis-

tently excels on other control set-intensive designs, like FPGA-06, FPGA-07, and

FPGA-09. Thus, our approach is especially effective for hard-to-pack designs.
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Table 2.9: Displacement Comparison with UTPlaceF

Design
UTPlaceF [40] UTPlaceF + DAA DAA + Greedy DL Proposed
Avg. Max. Avg. Max. Avg. Max. Avg. Max.

FPGA-01 5.7 42.6 5.6 26.1 1.2 9.2 1.0 11.4
FPGA-02 5.2 305.0 5.9 191.1 1.1 11.3 1.0 11.8
FPGA-03 12.2 146.9 7.7 90.9 1.2 23.8 1.0 11.5
FPGA-04 20.3 124.3 7.8 128.0 1.3 64.3 1.1 11.5
FPGA-05 12.1 185.1 10.5 126.7 1.2 47.8 1.1 11.8
FPGA-06 60.4 187.8 17.0 209.0 1.7 52.7 1.3 11.8
FPGA-07 21.1 232.6 13.9 166.8 1.7 92.5 1.3 11.5
FPGA-08 11.8 95.4 6.3 107.9 1.1 13.3 1.0 10.9
FPGA-09 13.0 150.6 10.3 144.7 1.6 86.8 1.2 11.7
FPGA-10 25.5 164.7 26.2 127.4 2.6 166.7 1.4 11.7
FPGA-11 40.8 138.1 15.6 124.8 1.4 46.4 1.0 11.5
FPGA-12 28.7 177.6 13.2 176.6 1.5 74.1 1.1 11.5

Norm. 21.4 162.5 11.7 135.0 1.5 57.4 1.2 11.6

Another notable merit of UTPlaceF-DL is that the correlation be-

tween FIPs and post-legalization solutions can be significantly improved. This

property is appealing in the sense that metrics, like wirelength, timing, and

routability, optimized in FIPs can be greatly preserved in legal solutions. Ta-

ble 2.9 shows the average and maximum cell displacements between the FIPs

and the post-legalization/DL solutions by using the four different methodolo-

gies listed in Table 2.8. As can be seen, the original UTPlaceF introduces

huge cell displacements with average and maximum values of 21.4 and 162.5,

respectively. DAA technique alone can effectively reduce them down to 11.7

and 135.0 in “UTPlaceF + DAA”. In “DAA + Greedy DL”, by applying the

greedy DL instead of the packing-based methodology, the average and maxi-

mum displacements can be further reduced to 1.5 and 57.4, respectively. For

all twelve benchmarks, the proposed methodology with DAA and the pro-

81



0 2 4 6 8 10 12 14 16
0

1

2

3

4
·104

Displacement

N
u
m
b
er

of
C
el
ls

UTPlaceF
UTPlaceF + DAA
DAA + Greedy DL

Proposed (DAA + DL)

Figure 2.16: The cell displacement distributions of UTPlaceF, UTPlaceF +
DAA, DAA + Greedy DL, and the proposed flow (DAA + DL) based on
design FPGA-03. The displacement of a cell is defined as the Manhattan dis-
tance between its locations in the FIP and the post-legalization/DL placement.
The average/maximum displacements are 12.2/146.9, 7.7/90.9, 1.2/23.8, and
1.0/11.5 in UTPlaceF, UTPlaceF + DAA, DAA + Greedy DL, and the pro-
posed flow, respectively.

posed DL together can achieve maximum displacements that are less than

12.0, which is the predefined constraint in our DL algorithm. Meanwhile, the

average displacements are all in the range from 1.0 to 1.5. As expected, our

DAA and DL techniques can greatly help to preserve the FIP solution even

after a legal solution is obtained.

Figure 2.16 visualizes the distributions of cell displacement between the

FIPs and the post-legalization/DL solutions based on design FPGA-03. Com-

pared with UTPlaceF, most cells in the proposed methodology are much closer

to their original locations in the FIP. However, tremendously large displace-

ments can be observed in UTPlaceF.
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Table 2.10: HPWL and the Maximum LUT and FF Utilizations (Equation (2.7))
w/ and w/o DAA after FIP

Design
Norm. HPWL Max. LUT & FF Util.

w/o DAA w/ DAA w/o DAA w/ DAA

FPGA-01 1.093 1.000 0.87 1.00
FPGA-02 0.992 1.000 1.08 1.11
FPGA-03 0.982 1.000 1.46 1.12
FPGA-04 0.966 1.000 1.59 1.11
FPGA-05 0.945 1.000 1.61 1.09
FPGA-06 0.970 1.000 2.04 1.12
FPGA-07 0.932 1.000 2.10 1.12
FPGA-08 0.907 1.000 1.88 1.18
FPGA-09 0.990 1.000 1.96 1.28
FPGA-10 0.993 1.000 2.76 1.28
FPGA-11 0.941 1.000 1.99 1.27
FPGA-12 0.989 1.000 2.49 1.40

Norm. 0.975 1.000 1.82 1.17

Table 2.10 shows the impact of DAA on HPWL and the maximum LUT

and FF resource utilization (Equation (2.7)) in FIP stage. On average, DAA

reduces the maximum LUT/FF resource utilization from 1.82 to 1.17, while in-

creases the wirelength by 2.5%. Note that, counter-intuitively, this wirelength

increase is not a quality degradation, but an improvement in the sense that

FIP solutions are getting closer to truly legal placements. This can be better

illustrated by Figure 2.17. It shows the HPWL after the flat initial placement

(FIP), legalization/DL (LG), and detailed placement (DP) stages in the four

previously described flows. In spite of the larger HPWL after FIP, flows with

DAA applied finally achieve better solutions with smoother wirelength con-

vergence. Besides, we can also see that the proposed DL technique largely

preserves the FIP solution in the LG stage and this is the main reason that

the proposed flow can significantly outperform the other three methodologies.
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Figure 2.17: The normalized HPWL after the flat initial placement (FIP),
legalization/DL (LG), and detailed placement (DP) in the four methodologies
listed in Table 2.8. All HPWL values are normalized to the post-DP HPWL
of the proposed flow.

2.4.4.2 Parameter Choosing in Dynamic Area Adjustment

A proper parameter setting in our dynamic area adjustment (DAA) al-

gorithm is important to the overall solution quality. In this section, we discuss

how several key parameters, including β+, β−, and Rmax in Equation (2.8),

should be set.

Figure 2.18 visualizes the normalized wirelength under different β+ and

β− values based on design FPGA-01. β+ > 1 and β− < 1 control the rates

of area inflation and shrinking, respectively, in DAA. The top-left (β+ ≈ 1

and β− ≈ 1) and bottom-right (β+ � 1 and β− � 1) regions in Figure 2.18

correspond to slow and fast area adjustment processes, respectively. As can be

seen, the optimal wirelength is achieved at a relatively slow area adjustment

rate, while the wirelength gets worse when cell areas are adjusted too fast.
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Figure 2.18: Normalized HPWL under different β+ and β− in Equation (2.8)
based on design FPGA-01. All wirelengths are normalized to the solution with-
out applying dynamic area adjustment.

This is because, for a very sharp area change, the placer typically needs several

iterations to “heal” the wirelength. That is, a too fast area adjustment can be

significantly harmful to the placement convergence. However, a too slow area

adjustment should also be avoided in the sense that all the cell should reach

their “target areas” reasonably earlier than the FIP stops to leave enough

time to the placement for stabilizing. In our framework, we empirically set

β+ = 1.1 and β− = 0.95 and we observe that the final solution quality is not

very sensitive to settings around these two values.

Figure 2.19 shows the normalized HPWL and routed wirelength un-

der different Rmax values based on design FPGA-05. DAA only shrinks cells in

regions with routing utilization less than Rmax to prevent from overfilling rout-

ing congested regions. We can see that, as Rmax increases, HPWL decreases
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Figure 2.19: Normalized HPWL and routed wirelengths under different Rmax

in Equation (2.8) based on design FPGA-05. All wirelengths are normalized to
the solution with Rmax = 0 (i.e., area shrinking is disallowed).

steadily due to the more aggressive cell shrinking. However, the routability get

worse at the same time, and as a result, the routed wirelength reduction grad-

ually saturates and starts to increase until an unroutable solution is reached

(not shown in the figure). Therefore, a proper Rmax is crucial to produce high-

quality as well as routing-friendly solutions. In our framework, we empirically

set Rmax = 0.65.

2.4.4.3 Runtime Scaling of the Direct Legalization

Figure 2.20 shows the runtime scaling of our DL algorithm for different

design sizes under 1, 2, 4, 8, and 16 threads. It can be seen that, with a fixed

number of available threads, the algorithm scales linearly with respect to the

design size. On the other hand, given a design, its runtime also decreases nearly

linearly as the number of threads increases (except the 16-thread case with
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Figure 2.20: Runtime scaling of the direct legalization.

hyper-threading). On average, 1.65×, 3.15×, 6.19×, and 8.68× speedups can

be achieved with 2, 4, 8, and 16 threads, respectively, compared with the single-

thread execution. Note that the scaling starts to saturate from 8 threads to

16 threads. This is because a CPU core can launch 2 hyper-threads that share

the same execution resources and cannot be truly parallelized. Considering

there are only 10 cores in our machine, at least 6 threads will not be running

at their maximum speed in the case of 16 threads.

2.4.4.4 Comparison with Other State-of-the-Art Placers

To further demonstrate the effectiveness of UTPlaceF-DL, we also com-

pare our result with other state-of-the-art academic placers, including RippleF-

PGA [12], GPlace [62] as well as the top-3 winners of the ISPD 2016 contest,

on the ISPD 2016 benchmark suite. The comparisons of routed wirelength
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and runtime are presented in Table 2.11.

Like the experiment setup in Section 2.4.4.1, we enable 16 threads only

for our DL algorithm and keep all other parts single-threaded. All other placers

are executed using a single thread. Although other placers can also gain some

performance by parallelizing their packing and legalization algorithms, the

improvement might be limited. This is because most of their packing and

legalization algorithms are not the runtime bottleneck, just like in UTPlaceF.

For example, RippleFPGA only takes about 5% of the total runtime on packing

and legalization [12].

Despite the different global/detailed placement engines and the exe-

cution machines, UTPlaceF-DL still shows the best overall routed wirelength.

On average, UTPlaceF-DL outperforms the three contest winners, GPlace, and

RippleFPGA by 8.0%, 14.0%, 44.4%, 25.4%, and 4.1%, respectively. Again,

UTPlaceF-DL especially excels in control set-intensive designs, like FPGA-06,

FPGA-07, FPGA-09, and FPGA-10. which further evidences the effectiveness of

our approach on hard-to-pack designs. As for the runtime, UTPlaceF-DL is

3.96×, 4.90×, and 5.84× faster than the three contest winners. While com-

paring with GPlace and RippleFPGA, UTPlaceF-DL runs 1.14× and 1.56×

slower.
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2.4.4.5 Runtime Breakdown

The runtime breakdown of UTPlaceF-DL based on all twelve designs

in the ISPD 2016 benchmark suite is shown in Figure 2.21. Again, we enable

16 threads only for DL and keep all other parts single-threaded. On average,

64.5% and 18.5% of the total runtime are taken by the quadratic placement

(quadratic programming and rough legalization) and the detailed placement,

respectively. While the proposed dynamic area adjustment, direct legalization,

and post-DL exception handling techniques consume 2.2%, 12.5%, and 0.7%

of the total runtime.

64.5%

Quadratic Placement

2.2%

Dynamic Area Adjustment

12.5%

Direct Legalization0.7%

Post-DL Exception Handling

18.5%

Detailed Placement

1.6%

Others

Figure 2.21: The runtime breakdown of UTPlaceF-DL based on designs in the
ISPD 2016 benchmark suite.

2.4.5 Summary

In this section, we have proposed a new paradigm, UTPlaceF-DL, for

FPGA placement without explicit packing. The proposed framework signifi-

cantly improves the correlation between early placements and final legal so-

lutions. To realize the proposed framework, a dynamic LUT and FF area
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adjustment technique and a fully parallelizable direct legalization algorithm

are proposed. Our experiments on the ISPD 2016 benchmark suite demon-

strate the effectiveness of the proposed approach. As this is the first work to

perform FPGA placement without explicit packing, we expect more research

to be done to further improve the quality of results.

91



2.5 elfPlace: Electrostatics-based Placement for Large-
Scale Heterogeneous FPGAs

There are various core FPGA placement algorithms have been pro-

posed in the literature and analytical placers are among the most efficient

and effective approaches. Analytical placers can be subdivided into quadratic

placers and nonlinear placers. Quadratic approaches, like UTPlaceF and

UTPlaceF-DL presented in Section 2.3 and Section 2.4 as well as works

in [3, 12, 24, 25, 77, 78], approximate the placement objective using quadratic

functions, while nonlinear approaches [14,34,50] use higher-order ones. Com-

pared with quadratic approaches, nonlinear approaches often achieve better

solution quality due to their even stronger expressive power.

In contrast to the enormous research endeavor spent on core placement

algorithms, there are still very limited works coping with resource heterogene-

ity issue in FPGA. Most existing analytical placers only treat highly-discrete

DSP and RAM blocks specially and eliminate the heterogeneity between LUTs

and FFs by either spreading them together with adjusted areas [3,12,40] or sim-

ply packing them before placement [14]. These approaches are usually highly

sensitive to the heuristics applied, which could hamper the solution quality and

placement robustness. A more recent work [19] proposed a multi-commodity

flow-based algorithm for quadratic placers to spread heterogeneous cells and

it demonstrated significant improvement over previous spreading heuristics.

However, due to the inherent limitation of the quadratic placement, their ap-

proach still simplifies spreading as a movement-minimization problem, which
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cannot explicitly optimize wirelength nor preserve the relative order among

cells of different resource types.

There are also works on optimizing other placement objectives to ease

the downstream packing, legalization, and routing steps. Many works [3, 12]

adopted the cell inflation technique to alleviate routing congestions. Our

UTPlaceF-DL, presented in Section 2.4, further considered the impact of

downstream packing/legalization and adjusted cell areas accordingly during

placement to improve the overall solution quality. However, all these works

were originally proposed for quadratic placers, studies on extending them to

more powerful nonlinear placement are still lacking.

In this section, we present elfPlace, a general, flat, nonlinear place-

ment algorithm for large-scale heterogeneous FPGAs. elfPlace adopts the

idea of casting placement to electrostatic system initially proposed by ePlace

family [16,55] for application-specific integrated circuits (ASICs), and it is en-

hanced to tackle the FPGA heterogeneity issue in a unified and elegant way.

Besides the conventional wirelength objective, elfPlace also performs routabil-

ity, pin density, and packing-aware optimizations to achieve even higher-

quality and smoother design closure. Our major contributions are summarized

as follows.

• We enhance the original ePlace algorithm [16,55] for ASICs to deal with

heterogeneous resource types in FPGAs.

• We employ augmented Lagrangian method, instead of the multiplier
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method used in ePlace, to formulate the nonlinear placement problem.

• We propose a preconditioning technique to improve the numerical con-

vergence given the wide spectrum of cell sizes and net degrees in FPGA

designs.

• We propose a normalized subgradient method to update density penalty

multipliers, which control the spreading of different resource types in a

self-adaptive manner.

• We improve the packing-aware area adjustment technique proposed

in [44] and integrate it, together with routability and pin density op-

timizations, into elfPlace.

• We demonstrate more than 7% improvement in routed wirelength, on

the ISPD 2016 benchmark suite [79], over four cutting-edge placers with

very competitive runtime.

The rest of this section is organized as follows. Section 2.5.1 introduces the

background knowledge. Section 2.5.2 sketches the overall flow of elfPlace.

Section 2.5.3 describes the core placement algorithms and Section 2.5.4 details

the routability, pin density, and packing-aware optimizations. Section 2.5.5

shows the experimental results, followed by the summary in Section 2.5.6.

94



2.5.1 Preliminaries

2.5.1.1 The ePlace Algorithm

ePlace [16, 55] is a leading-edge nonlinear global placement algorithm

for ASICs. It approximates half-perimeter wirelength (HPWL),

W (x,y) =
∑

e∈E
We(x,y) =

∑

e∈E

(
max
i,j∈e
|xi − xj|+ max

i,j∈e
|yi − yj|

)
, (2.14)

using the weighted-average (WA) model,

W̃ex(x,y) =

∑
i∈e xi exp(xi/γ)∑
i∈e exp(xi/γ)

−
∑

i∈e xi exp(−xi/γ)∑
i∈e exp(−xi/γ)

. (2.15)

Here x and y denote the cell locations, E denotes the set of nets in the de-

sign, and γ is a parameter to control the modeling smoothness and accuracy.

Equation (2.15) only gives the x-directed WA model of a net and the total

wirelength cost is defined as W̃ (x,y) =
∑

e∈E(W̃ex(x,y) + W̃ey(x,y)).

The key innovation of ePlace is that it casts the placement density cost

to the potential energy of an electrostatic system. With this transformation,

each cell i is modeled as a positive charge qi with the quantity proportional

to its area. Given the notations defined in Table 2.12, the electric force Fi =

qiξi = −qi∇ψi will guide each charge i towards the direction of minimizing

the total potential energy Φ,

Φ(x,y) =

∫∫

R

ρ(x, y)ψ(x, y), (x, y) ∈ R. (2.16)
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Table 2.12: Notations used in the electrostatic system

R A finite two-dimensional region
qi The electric charge quantity of charge i
ρ(x, y) The electric charge density at (x, y) ∈ R
ψi, ψ(x, y) The electric potential at charge i and (x, y) ∈ R
ξi, ξ(x, y) The electric field at charge i and (x, y) ∈ R
Φ(x,y) The total electric potential energy of placement (x,y)

The unique solution of the electrostatic system is given by Equation (2.17).





∇ · ∇ψ(x, y) = −∇ · ξ(x, y) = −ρ(x, y), (x, y) ∈ R, (2.17a)

n̂ · ∇ψ(x, y) = −n̂ · ξ(x, y) = 0, (x, y) ∈ ∂R, (2.17b)
∫∫

R

ρ(x, y) =

∫∫

R

ψ(x, y) = 0, (x, y) ∈ R, (2.17c)

where Equation (2.17a) is the Poisson’s equation to relate electric potential,

electric field, and charge density, Equation (2.17b) is Neumann boundary con-

dition (i.e., zero electric fields on the boundary of R) to prevent charges from

moving out of R, and Equation (2.17c) neutralizes the overall electric charge

and potential to ensure the solution uniqueness of Equation (2.17). ePlace

honors the placement density constraint by enforcing the electrostatic equilib-

rium state, where electric density is evenly distributed and Φ(x,y) = 0.

ePlace computes the numerical solution of Equation (2.17) using spec-

tral methods. It divides the placement region into a grid of m × m bins to

construct the charge density map ρ, then the electric potential ψ and electric
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field ξ = (ξx, ξy) can be obtained as follows.

au,v =
1

m2

m−1∑

x=0

m−1∑

y=0

ρ(x, y) cos (ωux) cos (ωvy), (2.18a)

ψ(x, y) =
m−1∑

u=0

m−1∑

v=0

au,v
ω2
u + ω2

v

cos (ωux) cos (ωvy), (2.18b)

ξx(x, y) =
m−1∑

u=0

m−1∑

v=0

au,vωu
ω2
u + ω2

v

sin (ωux) cos (ωvy), (2.18c)

ξy(x, y) =

m−1∑

u=0

m−1∑

v=0

au,vωv
ω2
u + ω2

v

cos (ωux) sin (ωvy). (2.18d)

Here x and y are bin indexes, u and v denote frequency indexes from 0 to

m − 1, and ωu = 2πu
m

and ωv = 2πv
m

are the frequencies of sin / cos wave

functions. Equation (2.18) can be efficiently computed using discrete cosine

transform (DCT) and its inverse (IDCT).

Finally, with both wirelength cost W̃ (x,y) and density penalty Φ(x,y)

well defined, ePlace then iteratively solves the following unconstrained nonlin-

ear optimization problem using multiplier method,

min
x,y

f(x,y) = W̃ (x,y) + λΦ(x,y), (2.19)

where λ is the density penalty multiplier to progressively enforce the density

constraint.
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2.5.2 elfPlace Overview

One major challenge of FPGA placement is the heterogeneity handling.

elfPlace tackles this problem by maintaining separate electrostatic systems for

different resource types, including LUT, FF, DSP, and RAM. The notations

used in elfPlace are given in Table 2.13.

Table 2.13: Notations used in elfPlace

S The resource type set {LUT, FF, DSP, RAM}
V, Vs The cell set and its subset with resource type s
VP, VP

s The physical cell set and its subset of resource type s
VF, VF

s The filler cell set and its subset of resource type s
Ai The area of cell i
Bs The bin grid for resource type s ∈ S
AP
b The physical cell area in bin b

Cb The resource capacity in bin b
λ The density multiplier vector (λLUT, λFF, λDSP, λRAM)T

Φ The potential energy vector (ΦLUT,ΦFF,ΦDSP,ΦRAM)T

Rand. Initial
Placement

Rand. Filler
Insertion

λ Initial-
ization

Gradient
Computation

Nesterov’s
Optimization

λ Update

DSP/RAM
Legalization

max(OLUT, OFF) < 15%?

Previous ∆A < 1%?

max(OLUT, OFF) < 10% &

max(ODSP, ORAM) < 20%?

DSP/RAM
are Legalized?

Instance
Area Adjust.

Decrease λ

Packing
LG/DP

Y

N

Y

N

Y

N

N Y

Figure 2.22: The overall flow of elfPlace.
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Figure 2.22 illustrates the overall flow of elfPlace. Different from typical

initial placement approaches that minimize wirelength by quadratic program-

ming, elfPlace starts from a random initial placement, which has been observed

to achieve nearly the same quality [51]. In the random initial placement, all

movable cells are first placed at the centroid of fixed pins and an extra Gaus-

sian noise perturbation is injected with standard deviation equal to 0.1% of

the width and height of the placement region.

After the initial placement, filler cells are created and inserted inde-

pendently for each resource type. Fillers are needed to pad whitespaces and

produce compact placement solutions. For each resource type s ∈ S with the

bin grid Bs, its total filler area is computed as
∑

b∈Bs Cb −
∑

i∈VP
s
Ai. In our

experiments, LUT/FF fillers are set to be squares with 1/8 CLB area, and

DSP and RAM fillers are set to be rectangles with dimensions 1.0 × 2.5 and

1.0 × 5.0 (CLB width), respectively, based on our target FPGA architecture.

For each resource type s, fillers are randomly inserted based on the resource

capacity distribution. More specifically, elfPlace first randomly distributes

fillers of resource type s into bins based on the probabilities Cb/
∑

b∈Bs Cb, and

their final locations are then uniformly drawn within bins. By this insertion

strategy, fillers can start with relatively low potential energies and it improves

the convergence and stability of the later placement optimization.

Based on the initial placement and filler insertion, elfPlace initializes

the density multiplier vector λ = (λLUT, λFF, λDSP, λRAM)T and then enters

the core placement optimization phase. In each placement iteration, the gra-
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dient of a wirelength-density co-optimization problem is computed and fed to

a Nesterov’s optimizer [55] to take a descent step. After that, λ is updated

to balance the spreading efforts on different resource types and universally

emphasize slightly more density penalties. When both LUT and FF overflows

(OLUT and OFF) are reduced down to 15%, elfPlace adjusts cell areas with the

consideration of routability, pin density, and downstream packing compatibil-

ity (i.e., LUT input pin constraint and FF control set constraint described in

Section 2.2). After the cell area adjustment, the nearly-equilibrated electro-

static states are likely to be damaged, therefore, elfPlace reduces the density

multipliers λ, in this case, to recover the quality again. This area adjustment

step is performed each time that LUT/FF converge to max(OLUT, OFF) < 15%

until the total area change is less than 1%. The overflow of each resource type

s is given in Equation (2.20).

Os =

∑
b∈Bs max(AP

b − Cb, 0)∑
b∈Bs A

P
b

,∀s ∈ S. (2.20)

Once the cell area converges and the overlaps are small enough for

all resource types, i.e., max(OLUT, OFF) < 10% and max(ODSP, ORAM) < 20%,

elfPlace legalizes and fixes DSP and RAM blocks using the minimum-cost flow

approach like in [12, 40]. Here we set a larger overflow target for DSP/RAM

due to their much higher discreteness compared with LUT/FF. After that,

LUT/FF placements are further optimized until they both meet the overflow

target again (max(OLUT, OFF) < 10%). Finally, elfPlace adopts the packing,

legalization, and detailed placement approaches in UTPlaceF-DL (Section 2.4)
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to produce the final legal solution.

2.5.3 Core Placement Algorithms

2.5.3.1 The Augmented Lagrangian Formulation

With the density constraint for each resource type modeled as a sepa-

rate electrostatic system, elfPlace solves the minimization problem defined as

follows:

min
x,y

W̃ (x,y) s.t. Φs(x,y) = 0,∀s ∈ S. (2.21)

However, unlike ePlace solves the density constrained placement problem using

the multiplier method given in Equation (2.19), elfPlace uses the augmented

Lagrangian method (ALM), as shown in Equation (2.22), instead.

min
x,y

f(x,y) = W̃ (x,y) +
∑

s∈S
λs

(
Φs(x,y) +

cs
2

Φs(x,y)2
)
. (2.22)

Here λs and Φs are density multiplier and electric potential energy for each re-

source type s ∈ S = {LUT, FF, DSP, RAM}, and cs is a parameter to control

the relative weight of the quadratic penalty term Φs(x,y)2. Slightly different

from the typical ALM formulation where Φ(x,y)2 has its weight independent

to λ, the magnitude of Φ(x,y)2 is also determined by λ in Equation (2.22).

This is to better control the overall effort on honoring the density constraints

and make elfPlace less sensitive to the initial placement.

The ALM formulation in Equation (2.22) can be viewed as a mixture

of the multiplier method and the penalty method. The motivation is that,

when the resource type s has a high potential energy Φs(x,y), we want the
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penalty term cs
2

Φs(x,y)2 to dominate (i.e., cs
2

Φs(x,y)2 � Φs(x,y)) and make

Equation (2.22) become the penalty method as shown in Equation (2.23).

Since in this case, the resource type s still has lots of overlaps, using the penalty

method can enhance the convexity of the objective function and improve the

convergence.

min
x,y

fPM(x,y) = W̃ (x,y) +
∑

s∈S
λs
cs
2

Φs(x,y)2. (2.23)

On the other hand, when the resource type s converges to a relatively small

potential energy Φs(x,y), we want the Φs(x,y) term to dominate (i.e.,

Φs(x,y) � cs
2

Φs(x,y)2) and make Equation (2.22) become the multiplier

method as shown in Equation (2.24). In this case, the overlaps of the re-

source type s are already relatively small and using the multiplier method

can continue the optimization without suffering the ill-conditioning problem

associated with the penalty method.

min
x,y

fMM(x,y) = W̃ (x,y) +
∑

s∈S
λsΦs(x,y). (2.24)

The key of achieving this penalty method and multiplier method trade-

off is to properly set the value of cs,∀s ∈ S. We observe that, regardless of

the design size, the final potential energy always converges to 10−5 to 10−7 of

the initial one. Therefore, we define cs as follows:

cs =
β

Φs(x(0),y(0))
,∀s ∈ S, (2.25)

where β is set to 2 × 103 in our experiments and Φs(x
(0),y(0)) is the po-
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tential energy of the random initial placement (described in Section 2.5.2).

Under this setting, we will have cs
2

Φs(x,y)2 = Φs(x,y) when Φs(x,y) =

10−3 Φs(x
(0),y(0)). The experimental result in Section 2.5.5.2 shows that our

ALM formulation could improve the final routed wirelength by 1.2% compared

with the original multiplier method adopted in ePlace.

2.5.3.2 Gradient Computation and Preconditioning

The x-directed gradient of our objective function defined in Equa-

tion (2.22) can be derived as shown in Equation (2.26). For brevity, only

x-direction will be discussed in the rest of this section and similar conclusions

are applicable to y-direction as well.

∂f(x,y)

∂xi
=
∂W̃ (x,y)

∂xi
+ λs

(∂Φs(x,y)

∂xi
+ csΦs(x,y)

∂Φs(x,y)

∂xi

)

=
∂W̃ (x,y)

∂xi
− λsqiξxi

(
1 + csΦs(x,y)

)
, ∀i ∈ Vs.

(2.26)

Although our ALM-based density penalty term is initially motivated by math-

ematics, there are still physical intuitions behind its gradient. By the nature

of electrostatics, the electric force qiξi on each charge i will guide the charge

towards a nearby low-potential well and this is reflected by the λsqiξxi term in

Equation (2.26). Besides, the extra λsqiξxicsΦs(x,y) term further accelerates

the charge movement for resource types with high potential energies, which

often correspond to relatively large cell overlaps in the placement problem.

The gradient defined in Equation (2.26) will be preconditioned before

being finally fed to the optimizer. Preconditioning can make the local curva-
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ture of the objective function become nearly spherical, and hence, alleviate the

ill-conditioning problem and improve the numerical convergence and stability.

The most commonly used preconditioner is the inverse of the Hessian matrix

Hf of the objective function f , and the preconditioned gradient H−1
f ∇f , in-

stead of the original ∇f , will be used as the (opposite of) descent direction.

However, due to the scale of the placement problem and the complexity of our

objective function, it is impractical to compute the exact Hessian. Instead,

elfPlace adopts the much cheaper Jacobi preconditioner to approximate the

actual Hessian.

The x-directed Jacobi preconditioner is a diagonal matrix with the i-th

diagonal entry equal to ∂2f
∂x2i

. By Equation (2.26), we have

∂2f(x,y)

∂x2
i

=
∂2W̃ (x,y)

∂x2
i

− λsqi
(∂ξxi
∂xi

(
1 + csΦ(x,y)

)
− csξ2

xi

)
. (2.27)

The closed-form expression of ∂2W̃ (x,y)

∂x2i
is too expensive to compute in practice,

therefore, we approximate it using

∂2W̃ (x,y)

∂x2
i

∼
∑

e∈Ei

1

|e| − 1
, (2.28)

where Ei denotes the set of nets incident to cell i and |e| denotes the degree

of the net e. The second-order derivative of the density term is even more

complicated. Although the numerical solution of
∂ξxi
∂xi

can be computed again

through spectral methods based on Equation (2.18), we choose to only keep

the λsqi term for the sake of efficiency.

104



Therefore, the overall x-directed second-order derivative of the objective

is approximated as follows:

∂2f(x,y)

∂x2
i

∼ hxi = max
(∑

e∈Ei

1

|e| − 1
+ λsqi, 1

)
,∀i ∈ Vs, (2.29)

where the max(·, 1) is to avoid extremely small hxi for filler cells, who do not

have incident nets, when λs is very small. Finally, the preconditioned gradient,

H−1
f ∇f(x,y) =

( 1

hx1

∂f(x,y)

∂x1

,
1

hy1

∂f(x,y)

∂y1

, · · ·
)T
, (2.30)

will be fed to a Nesterov’s optimizer [54] to iteratively update the placement

solution. Since in FPGA designs, net degrees (e.g., local signal nets and global

clock nets) and cell pin counts and sizes (e.g., small LUT/FF cells and large

DSP/RAM blocks) can vary significantly, this wirelength preconditioner is

essential to the numerical convergence of our optimization. The experimental

result in Section 2.5.5.2 shows that elfPlace can barely converge without our

preconditioning technique.

2.5.3.3 Density Multipliers Setting

One important thing we have not yet discussed is the setting of den-

sity multipliers λ, which control the spreading efforts on different resource

types. Since there is often heavy connectivity among different resource types,

the spreading process must be capable of achieving target densities for all

resource types while not ruining the natural physical clusters consisting of

heterogeneous cells.
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In elfPlace, we set the initial density multipliers λ(0) as follows:

λ(0) = η
‖∇W̃ (x(0),y(0))‖1∑

i∈V qi‖ξ(0)
i ‖1

(
1, 1, · · · , 1

)T
, (2.31)

where (x(0),y(0)) represent the initial placement, ξ
(0)
i denotes the initial electric

field at cell i, η is a weighting parameter, and ‖ · ‖1 denotes the L1-norm of a

vector. In order to emphasize the wirelength optimization in early iterations, η

is set to 10−4 in our experiments. Note that λ(0) is an |S|-dimensional vector,

where |S| is the number of resource types, and by Equation (2.31), we start

from spreading all resource types with the same weight.

Classical optimization approaches use the subgradient method to up-

date λ [37]. According to Equation (2.22), the subgradient of λ is defined

as

∇subλ =
(
· · · ,Φs(x,y) +

cs
2

Φs(x,y)2, · · ·
)T
, s ∈ S. (2.32)

The reason why ∇subλ is called subgradient instead of gradient is that the

dual function, l(λ) = max f(x,y)|λ, associated with Equation (2.22) is not

smooth but piecewise linear [37].

However, in our placement problem, the potential energies of differ-

ent resource types, Φs, can differ by order of magnitudes. The very sparse

DSP/RAM blocks usually have significantly smaller total potential energies

compared with LUT/FF cells. As a result, using the subgradient in Equa-

tion (2.32) to guide the λ updating can lead to severely ill-conditioned prob-

lems. To mitigate this issue, the normalized subgradient defined in Equa-

106



tion (2.33) is used instead in elfPlace.

∇̂subλ =
(
· · · , 1

Φs(x(0),y(0))

(
Φs(x,y) +

cs
2

Φs(x,y)2
)
, · · ·

)T
,

=
(
· · · , Φ̂s(x,y) +

β

2
Φ̂s(x,y)2, · · ·

)T
, s ∈ S.

(2.33)

Here we use Φ̂s(x,y) = Φs(x,y)/Φs(x
(0),y(0)) to denote the potential energy

normalized by the potential energy of the initial placement and cs is replaced by

its definition given in Equation (2.25). After this normalization, each Φ̂s(x,y)

is approximately upper bounded by 1, which can more accurately reflect the

relative level of density violation for each resource type.

Given the λ(k) and the step size t(k) at iteration k, we compute λ(k+1)

by Equation (2.34) and our step size updating scheme is further presented by

Equation (2.35).

λ(k+1) = λ(k) + t(k) ∇̂subλ
(k)

‖∇̂subλ(k)‖2

. (2.34)

t(k) =




αH − 1, for k = 0,

t(k−1)

(
log(β‖Φ̂(k)‖2+1)

1+log(β‖Φ̂(k)‖2+1)

(
αH − αL

)
+ αL

)
, for k > 0.

(2.35)

Here β is the same weighting parameter used in Equation (2.25) and the pa-

rameter pair (αL, αH) defines the range of increasing rate of the step size.

The motivation of our step size updating scheme shown in Equation (2.35)

is that the quadratic density penalty term often decays much faster than the

linear penalty term in our objective Equation (2.22). Therefore, we incline

to increase the step size faster when the quadratic penalty term dominates

(i.e., β‖Φ̂(k)‖2 � 1). As the cell overlaps become smaller, the linear penalty
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term will start to take over and a slower increasing rate will be used in this

case. In our experiments, we set (αL, αH) to (1.05, 1.06). It should be noted

that, although 1.05 ≈ 1.06, their high-order exponents can differ by order of

magnitudes (e.g., (1.06/1.05)500 > 100).

(a)

(b)

Figure 2.23: The distributions of physical LUT (green), FF (blue), DSP (red),
and RAM (orange) cells in (a) an intermediate placement and (b) the place-
ment right before DSP/RAM legalization based on FPGA-10. Both figures are
rotated by 90 degrees.

Figure 2.23 illustrates the heterogeneous spreading process in elfPlace.

As can be seen from Figure 2.23(a), our λ updating scheme can greatly pre-

serve those natural physical clusters consisting of heterogeneous cells. The
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placement right before DSP/RAM legalization shown in Figure 2.23(b) further

demonstrates the capability of elfPlace to achieve nearly overlap-free solutions

even for highly-discrete DSP/RAM blocks without explicit legalization.

2.5.4 Cell Area Adjustment

Besides minimizing wirelength, elfPlace is also capable of tackling other

practical issues in real-world designs, such as routability, pin density, and

packing compatibility. Routability and pin density optimizations have always

been the fundamental requirements of placement to achieve routing-friendly

solutions. While packing compatibility optimization, which was also discussed

in UTPlaceF-DL (Section 2.4), is to further consider the effect of downstream

packing early in the placement stage. It turns out that all these issues can

be addressed by properly adjusting cell areas on top of our wirelength-driven

placement. Therefore, in this section, we propose a unified cell area adjustment

approach to simultaneously optimize all of them.

2.5.4.1 The Adjustment Scheme

Figure 2.24 sketches the algorithm flow of our cell area adjustment. In

the beginning, for each physical cell i, we first compute three independent cell

areas one each is optimized for routability (Aro
i ), pin density (Apo

i ), and packing

compatibility (Apko
i ). Let Ai denote the area of cell i before the adjustment,

we define the target area increase of each physical cell i as follows:

∆Ai = max(Aro
i , A

po
i , A

pko
i , Ai)− Ai,∀i ∈ VP. (2.36)
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Compute
Routability-

Optimized Area
Aro

Compute
Pin Density-

Optimized Area
Apo

Compute
Packing-

Optimized Area
Apko

Adjust Physical
and Filler

Instance Areas

Adjust Density
Multipliers λ

Figure 2.24: The area adjustment flow in elfPlace to simultaneously optimize
routability, pin density, and downstream packing compatibility.

In order to prevent the total adjusted area from exceeding the total capacity

of each resource type, all ∆Ai need to be further scaled by the following factor

according to the resource type s of i.

τs = min(

∑
i∈VF

s
Ai∑

i∈VP
s

∆Ai
, 1),∀s ∈ S, (2.37)

where VF
s denotes the set of filler cells for resource type s and

∑
i∈VF

s
Ai is the

total filler area of resource type s before the adjustment. Basically, scaling all

∆Ai by Equation (2.37) guarantees that the total increased physical cell area

is no greater than the total available filler area for each resource type. The

final adjusted area A′i of each physical cell i is then given by Equation (2.38).

A′i = Ai + τs∆Ai,∀i ∈ VP
s ,∀s ∈ S. (2.38)

Recall that elfPlace relies on electrostatic neutrality to meet the density

constraints Φ = 0, therefore, we also need to downsize filler cells to maintain

the total positive charge quantity unchanged. The final adjusted area A′i of
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each filler cell i is then defined as follows:

A′i =

∑
j∈Vs Aj −

∑
j∈VP

s
A′j

|VF
s |

,∀i ∈ VF
s ,∀s ∈ S. (2.39)

Our area adjustment step is physically equivalent to redistributing

charge density with the overall electrostatic neutrality preserved. After this

redistribution, however, the previously nearly-equilibrated electrostatic states

are likely to be ruined. In addition, the adjustment magnitudes and the po-

tential energy increases can be highly uneven across different resource types

(e.g., FFs can vary more than LUTs due to the control set rules). Therefore,

we reset the density multipliers λ by Equation (2.40) to adapt and recover

from this perturbation.

λ′ = η′
‖∇W̃‖1

〈(· · · ,∑i∈Vs qi‖ξi‖1, · · · )T , ∇̂subλ〉
∇̂subλ, (2.40)

where 〈·, ·〉 denotes the inner product of two vectors, (· · · ,∑i∈Vs qi‖ξi‖1, · · · )T

is an |S|-dimensional vector that contains the L1-norm of the density gradient

for each resource type s ∈ S, ∇̂subλ denotes the normalized subgradient of λ,

as defined in Equation (2.33), after the area adjustment, and η′ is a weighting

parameter set to 0.1 in our experiments. Equation (2.40) essentially redirects

λ to its current normalized subgradient ∇̂subλ with the scale determined by

the gradient norm ratio between wirelength and density. In this way, both the

direction and scale of the adjusted λ′ can adapt the perturbed electrostatic sys-

tem and help to better heal the placement quality. Besides, in order to smooth

the placement convergence, the density multiplier step size is also adjusted by
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Equation (2.41), where αH is the same parameter as used in Equation (2.35).

t′ = (αH − 1) ‖λ′‖2. (2.41)
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Figure 2.25: The normalized potential energy Φ̂ and HPWL at different place-
ment iterations on FPGA-10.

Figure 2.25 illustrates the impact of cell area adjustment on the place-

ment convergence process. In this example, the adjustment is performed twice

at iteration 600 and 887, where the potential energies increase sharply. By

using our adaptive density multiplier and step size resetting techniques, the

wirelength can be gradually healed and smoothly converges to a nearly overlap-

free solution.

2.5.4.2 The Optimized Area Computation

As we discussed in Section 2.5.4.1, for each physical cell i, elfPlace

computes three independent areas that are optimized for routability (Aro
i ), pin
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density (Apo
i ), and packing compatibility (Apko

i ), respectively.

2.5.4.2.1 Routability-Optimized Area

In order to compute the routability-optimized areas, elfPlace first performs

a RISA/RUDY-based [15, 69] routing congestion estimation. Let uh
i and uv

i

denote the resulting horizontal and vertical routing utilizations at cell i, then

we compute the routability-optimized area of each physical cell i as follows:

Aro
i = Ai min

(
max

(
uh
i , u

v
i

)2
, 2
)
,∀i ∈ VP. (2.42)

2.5.4.2.2 Pin Density-Optimized Area

Similarly, elfPlace also estimates pin density by dividing the placement region

into bins. Let cp denote the unit-area pin capacity (determined by the FPGA

architecture). For each cell i, if we denote its local pin density by up
i and

denote its pin count as |Pi|, then its pin density-optimized area is defined as

follows:

Apo
i =

|Pi|
cp

min
(
up
i , 1.5

)
,∀i ∈ VP. (2.43)

Different from the routability-optimized area Aro
i , the pin density-optimized

area Apo
i here is independent to the current cell area Ai. This is because,

compared with routing utilization, local pin density is usually very noisy and

sensitive to the placement. If Apo
i is self-accumulated as in Equation (2.42), it

can be excessively over-inflated.
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2.5.4.2.3 Packing Compatibility-Optimized Area

One special challenge of flat FPGA placement is that we can barely know the

correct LUT and FF areas before the actual downstream packing solution is

formed. Recall the CLB architecture described in Section 2.2, if a LUT/FF is

incompatible with most of its physical neighbors (e.g., violating the pin count

and control set rules), then it tends to occupy a significant portion of a CLB

alone. For such a cell, we intuitively should assign it a larger area.

To estimate the cell areas in a feasible packing solution, we first assume

the cell movement (∆x,∆y) during the downstream packing/legalization ap-

proximately follows Gaussian distribution. That is, we have ∆xi ∼ N (0, σ)

and ∆yi ∼ N (0, σ), where σ is the assumed standard deviation of the move-

ment. Then, we divide the placement region into square bins with bin length

equal to σ, and for each LUT/FF cell i, we conduct the area estimation us-

ing the bin window Bi, of size 5 × 5 bins, that is centered at (xi, yi). Let

(Bxl
i ,Byl

i ,Bxh
i ,Byh

i ) denote the bounding box of the estimation window Bi of

cell i, the expectation of any cell j falling into Bi then can be defined as

IEj∈Bi = Pσ(Bxl
i ≤ xj < Bxh

i ) Pσ(Byl
i ≤ yj < Byh

i ), (2.44)

where Pσ(a ≤ µ < b) represents the total probability of the Gaussian distri-

bution N (µ, σ) in the range [a, b).

For each LUT cell i, let VP
i and VP

i denote the sets of LUTs that can

and cannot be fitted into the same BLE with i (see Section 2.2), respectively,
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then we define the packing compatibility-optimized area for LUT i as follows:

Apko
i =

1

16

∑
j∈VP

i
IEj∈Bi∑

j∈VP
LUT

IEj∈Bi
+

1

8

∑
j∈VP

i
IEj∈Bi∑

j∈VP
LUT

IEj∈Bi
,∀i ∈ VP

LUT. (2.45)

Equation (2.45) essentially is a weighted average of the compatible and incom-

patible expectations for i within the window Bi. Each Apko
i ,∀i ∈ VP

LUT, is in

the range [1/16, 1/8] based on our target architecture.

The estimation for FFs are more subtle due to the complicated con-

trol set rules (see Section 2.2). For a FF cell i, let θi denote its control set

(CK, SR,CE) and let Θi denote the set of control sets that have the same CK

and SR with θi. If we use ni,θ to denote the number of FFs in Bi with the

control set θ, then the area of FF i in the tightest packing solution formed

within Bi can be estimated by Equation (2.46), as given by Equation (2.10) in

Section 2.4.3.2.3.

Apko-disc
i =

1

2ni,θi

dni,θi/4e∑
θ∈Θi
dni,θ/4e

⌈∑
θ∈Θi
dni,θ/4e
2

⌉
,∀i ∈ VP

FF. (2.46)

It can be seen that Equation (2.46) involves many ceiling operations (d·e),

which make Apko-disc
i discontinuous (disc) and very sensitive to the estimation

window Bi and the placement solution.

In elfPlace, the much smoother Equation (2.47), instead of Equa-

tion (2.46), is used as the packing compatibility-optimized areas for FF cells.

Apko
i =

1

2IEi,θi

sdc(IEi,θi , 4)∑
θ∈Θi

sdc(IEi,θ, 4)
sdc
(∑

θ∈Θi

sdc(IEi,θ, 4), 2
)
,∀i ∈ VP

FF. (2.47)

It has two notable improvements over Equation (2.46): (1) it replaces each FF
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count ni,θ in Equation (2.46) with the smoother expectation IEi,θ, which denotes

the expected number (nonintegral in general) of FFs in window Bi with the

control set θ; (2) it replaces each division-ceiling operation in Equation (2.46)

with the soft division-ceiling function sdc(x, d) defined in Equation (2.48).

sdc(x, d) =

{
x+ (1− d)

⌊
x/d
⌋
, for x/d− bx/dc < 1/d,⌈

x/d
⌉
, otherwise.

(2.48)

The plots of sdc(x, d) function w.r.t. x/d are illustrated in Figure 2.26. It

smoothes dx/de by linearizing the beginning 1/d of each sharp step. As d

approaches to ∞, sdc(x, d) behaves more like dx/de.

0 1 2 3 4

0

1

2
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4

x/d

s
d
c
(x
,d
)

d = 2

d = 4

d = 8

d → ∞

Figure 2.26: The plots of the soft division-ceiling function sdc(x, d) w.r.t. x/d.

2.5.5 Experimental Results

We implement elfPlace in C++ and perform experiments on a Linux

machine running with Intel Core i9-7900 CPUs (3.30 GHz and 10 cores) and

128 GB RAM. Careful parallelization is applied throughout the whole frame-
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work with the support of OpenMP 4.0 [2]. The ISPD 2016 FPGA placement

contest benchmark suite [79] released by Xilinx is adopted to demonstrate the

effectiveness and efficiency of elfPlace. Routed wirelength reported by Xilinx

Vivado v2015.4 is used to evaluate the placement quality. The characteristics

of the benchmarks are listed in Table 2.14.

Table 2.14: ISPD 2016 Contest Benchmarks Statistics

Design #LUT #FF #RAM #DSP #Ctrl Set

FPGA-01 50K 55K 0 0 12
FPGA-02 100K 66K 100 100 121
FPGA-03 250K 170K 600 500 1281
FPGA-04 250K 172K 600 500 1281
FPGA-05 250K 174K 600 500 1281
FPGA-06 350K 352K 1000 600 2541
FPGA-07 350K 355K 1000 600 2541
FPGA-08 500K 216K 600 500 1281
FPGA-09 500K 366K 1000 600 2541
FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 602K 600 500 1281

Resources 538K 1075K 1728 768 -

2.5.5.1 Comparison with State-of-the-Art Placers

We compare elfPlace with four state-of-the-art analytical FPGA plac-

ers, namely, UTPlaceF [40], RippleFPGA [12], GPlace3.0 [3], and UTPlaceF-

DL [44]. The executables are obtained from their authors and executed on

our machine. Since only UTPlaceF-DL and elfPlace support multi-threading,

UTPlaceF, RippleFPGA, and GPlace3.0 are single-thread executed, while

UTPlaceF-DL and elfPlace are executed with both a single thread and 10

threads.
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Table 2.15 shows the comparison results. Metrics “WL” and “RT”

represent the routed wirelength in thousands and runtime in seconds, while

“WLR” and “RTR” represent the routed wirelength and runtime ratios nor-

malized to the 10-threaded elfPlace. It can be seen that elfPlace achieves the

best routed wirelength on eleven out of twelve designs and outperforms UT-

PlaceF, RippleFPGA, GPlace3.0, and UTPlaceF-DL by, in average, 13.6%,

11.3%, 8.9%, and 7.1%, respectively. It is worthwhile to note that these

wirelength improvements are fairly consistent from small designs to large

ones. With only a single thread, elfPlace demonstrates similar runtime com-

pared with UTPlaceF, GPlace3.0, and UTPlaceF-DL, while it runs more than

3× slower than the fastest RippleFPGA. By exploiting 10 threads, elfPlace

achieves 3.51× speedup and shows similar runtime with RippleFPGA. Among

all twelve designs, the 10-threaded elfPlace produces the fastest runtime on

the seven largest designs, which evidences its good scalability.
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2.5.5.2 Individual Technique Validation

Table 2.16 further validates the effectiveness of each proposed tech-

nique. The column “w/ MM in Equation (2.24)” shows the results of us-

ing the multiplier method (MM) in Equation (2.24), which is adopted by

ePlace, instead of our proposed augmented Lagrangian method (ALM) in

Equation (2.22). To make a fair comparison, we set the step size of the

MM in a way that the MM and our ALM can converge within about the

same amount of time. With this setup, our proposed ALM-based formula-

tion can produce an average of 1.2% better routed wirelength compared with

the MM-based formulation. The column “w/o Precond.” shows the results

without the preconditioning in Equation (2.29) and it can barely converge due

to the wide spectrum of cell sizes and net degrees in FPGA designs. The

column “w/ ePlace Precond.” further gives the results of replacing our pre-

conditioner in Equation (2.29) with the one proposed in ePlace [54]. Although

the ePlace’s preconditioning technique can achieve similar placement quality

and efficiency, it fails to converge on two benchmarks in our experiments. Fi-

nally, the column “w/ Apko
i in UTPlaceF-DL” presents the results of using

the packing compatibility-optimized area proposed in UTPlaceF-DL instead

of our Gaussian and sdc-smoothed Equation (2.45) and Equation (2.47). With

our smoothing techniques, elfPlace can converge 15% faster while maintaining

essentially the same solution quality.
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Table 2.16: Normalized Routed Wirelength and Placement Runtime Comparison
for Individual Technique Validation

Design
w/ MM w/o w/ ePlace w/ Apko

i elfPlace
in Equation (2.24) Precond. Precond. in UTPlaceF-DL
WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR

FPGA-01 1.021 1.02 1.009 1.01 1.006 1.02 1.004 1.12 1.000 1.00
FPGA-02 1.010 0.97 * - * - 1.001 1.16 1.000 1.00
FPGA-03 1.009 1.03 * - 0.995 1.03 0.998 1.23 1.000 1.00
FPGA-04 1.046 0.94 * - * - 1.002 1.16 1.000 1.00
FPGA-05 1.026 1.05 * - 1.002 1.03 0.996 1.07 1.000 1.00
FPGA-06 1.008 1.01 * - 1.030 0.98 1.004 1.25 1.000 1.00
FPGA-07 1.001 1.04 * - 0.988 1.04 0.986 1.20 1.000 1.00
FPGA-08 0.991 1.01 * - 0.996 1.01 0.999 1.14 1.000 1.00
FPGA-09 1.003 1.01 * - 0.996 1.03 1.002 1.12 1.000 1.00
FPGA-10 1.006 1.01 * - 1.000 1.01 0.996 1.03 1.000 1.00
FPGA-11 1.011 0.98 * - 1.002 1.05 1.009 1.15 1.000 1.00
FPGA-12 1.017 1.02 * - 0.995 1.04 1.003 1.14 1.000 1.00

Norm. 1.012 1.01 1.009 1.01 1.001 1.03 1.000 1.15 1.000 1.00

* Placement fails to converge.

2.5.5.3 Runtime Breakdown

Figure 2.27 shows the runtime breakdown of the 10-threaded elfPlace

based on FPGA-12. The most time-consuming part is to compute the wire-

length gradient ∇W̃ , which takes 34.4% of the total runtime. The density

gradient computation is relatively efficient and it consumes 7.5% of the total

runtime on constructing the density maps ρ and 1.4% of the total runtime on

computing the electric potential ψ and electric field ξ by Equation (2.18). The

parameter updating, which involves the computation of wirelength, overflow,

potential energy Φ, etc., takes 7.3% of the total runtime. The packing, legal-

ization, and detailed placement algorithms adopted from UTPlaceF-DL con-

sumes total 37.5% of the runtime. While the remaining 11.9% of the runtime is
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spent on parsing, placement initialization, and the rest of runtime-insignificant

tasks.

34.4%

Compute rfW

7.5%

Compute ⇢

1.4%

Compute  and ⇠

7.3%

Update Parameters

21.5%

Clustering/LG

16%

DP

11.9%

Others

Figure 2.27: The runtime breakdown of the 10-threaded elfPlace based on
FPGA-12.

2.5.6 Summary

In this section, we have presented elfPlace, a general, flat, nonlinear

placement algorithm for large-scale heterogeneous FPGAs. elfPlace resolves

the traditional FPGA heterogeneity issue by casting the density constraints of

heterogeneous resource types to separate but unified electrostatic systems. An

augmented Lagrangian formulation together with a preconditioning technique

and a normalized subgradient-based multiplier updating scheme are proposed

to achieve satisfiable solution quality with fast and robust numerical conver-

gence. Besides pure-wirelength minimization, elfPlace is also capable of opti-

mizing routability, pin density, and downstream packing compatibility based

on a unified cell area adjustment scheme. Our experiments show that elfPlace

significantly outperforms four state-of-the-art placers in routed wirelength with

competitive runtime.
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Chapter 3

Clock-Aware FPGA Placement Algorithms

3.1 Introduction

Placement is one of the most important and time-consuming optimiza-

tion steps in FPGA implementation flow and it can significantly affect the

efficiency and quality of mapped designs on FPGA devices. The placement

problem has attracted great attention from both academia and industry and

has been intensively studied during the last two decades. However, with the

increasing complexity and scale of modern FPGA devices, today’s FPGA ar-

chitecture imposes various intricate constraints, which have not yet been paid

enough attention to, during the placement stage. These constraints have great

impacts on placement quality in terms of traditional design metrics such as

wirelength, routability, power, and timing. Therefore, it is imperative to have

This chapter is based on the following publications.

1. Wuxi Li, Yibo Lin, Meng Li, Shounak Dhar, and David Z. Pan. “UTPlaceF 2.0:
A high-performance clock-aware FPGA placement engine.” ACM Transactions on
Design Automation of Electronic Systems 23.4 (2018): 42.

2. Wuxi Li, Mehrdad E. Dehkordi, Stephen Yang, and David Z. Pan. “Simultaneous
Placement and Clock Tree Construction for Modern FPGAs.” In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 132-141. ACM, 2019.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.
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new placement techniques to honor these complicated architecture constraints.

Clock rules, among various FPGA architecture constraints, are of great

importance, not only because of their significant impact on timing closure and

power dissipation but their imposed layout constraints that affect how effi-

ciently other logic can be mapped. With the consideration of clock rules,

placement turns out to be much more difficult for FPGAs even to find a fea-

sible solution. For modern FPGAs, clock network planning must be involved

during or even before placement stage due to their pre-manufactured clock net-

works, which cannot be adjusted to different designs, as well as their limited

clock routing resources. The interdependency between clock sink placement

and clock network planning makes the clock-aware placement for FPGAs a

challenging chicken-and-egg problem.

While many existing works have proposed fairly mature placement tech-

niques for FPGAs to optimize conventional design metrics such as wirelength,

routability, power, and timing [3, 7, 12, 14,25,40,44,50,58,66–68,75,77], there

has been limited research effort on placement with the awareness of clock rules.

The closest related previous work is [35], which proposes a cost function for

cell swapping that penalizes high-clock-usage placement and integrates it into

a conventional simulated annealing-based placement engine to produce clock-

legal solutions. However, their approach suffers from slow annealing process

and its quality heavily depends on the cost function tuning. Moreover, their

approach can easily get stuck in some local swappings and hence unable to

resolve global clock congestions.
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In this chapter, we propose two clock-aware placement frameworks:

• UTPlaceF 2.0, a high-performance clock-aware placement framework

that resolves clock routing congestions by an iterative minimum-cost

flow-based cell assignment technique.

• UTPlaceF 2.X, a generalization of UTPlaceF 2.0 that explore a much

larger clock routing solution space based on the branch-and-bound idea.

In the rest of this chapter, Section 3.2 introduces the target FPGA

clocking architecture of the two proposed frameworks, Section 3.3 describes

UTPlaceF 2.0, and Section 3.4 details UTPlaceF 2.X.
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3.2 Target FPGA Clocking Architecture

Our target FPGA device is Xilinx UltraScale VU095, which was also

adopted in both ISPD 2016 and ISPD 2017 FPGA placement contests [79,80].

Its clocking architecture is illustrated in Figure 3.1(a) – (c). The global clock-

ing architecture, as shown in Figure 3.1(a), is physically a two-level network

composed of a clock routing layer (R-layer) and a clock distribution layer (D-

layer). To simplify the notations, in the rest of this chapter, we will denote

the horizontal/vertical routing layer as HR/VR, and the horizontal/vertical

distribution layer as HD/VD. In the target architecture, all of HR, VR, HD,

and VD layers have 24 tracks running through each of the 5 × 8 clock regions.

Figure 3.1(b) gives a closer look within a single clock region. The connection

between HR and VR layers are bidirectional, while there are only unidirectional

connections from HR/VR to VD and from VD to HD. Given this architecture,

a clock tree needs to follow the pattern shown in Figure 3.1(c). Specifically,

it consists of two parts: (1) a D-layer vertical trunk tree connecting all the

clock regions containing clock loads; (2) an R-layer route connecting the clock

source and the D-layer trunk tree. For the leaf clock networks, a clock re-

gion is further divided into multiple half-column regions of two-site width and

half-clock-region height as shown in Figure 3.1(d). Figure 3.1(e) illustrates

a detailed view of three adjacent half-column regions. Different half-column

regions might contain distinct logic resources but they have similar leaf clock

networks to directly drive clock sinks within them. In the target architecture,

the leaf clock network in each half-column region has 12 routing tracks.
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Figure 3.1: Illustration of the target clocking architecture. (a) A global view
of 2 × 3 clock regions with R-layer (red) and D-layer (blue). (b) A detailed
view of HR/VR/HD/VD within a single clock region. (c) The required routing
pattern of a clock net. (d) A global view of half-column regions within a clock
region. (e) A detailed view of three adjacent half-column regions with different
logic resources.
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3.3 UTPlaceF 2.0: A High-Performance Clock-Aware
FPGA Placer

Modern FPGA devices contain complex clock architectures on top of

configurable logic. The physical structure of clock networks in an FPGA is pre-

manufactured and cannot be adjusted to different applications. Furthermore,

clock routing resources are typically limited for high-utilization designs. Con-

sequently, clock architectures impose extra clock constraints and further com-

plicate physical implementation tasks such as placement. Traditional place-

ment techniques only optimize conventional design metrics such as wirelength,

routability, power, and timing without clock legality consideration. It is im-

perative to have new techniques to honor clock constraints during placement

for FPGAs.

To address the clock legalization challenges in FPGA placement

for large-scale state-of-the-art commercial FPGAs, we proposed a high-

performance clock-aware placement engine, UTPlaceF 2.0, which simulta-

neously optimizes the conventional placement objectives of wirelength and

routability and honors complicated global and detailed clock constraints. The

major contributions of this work are highlighted as follows.

• An iterative minimum-cost-flow-based cell assignment technique produc-

ing clock-legal solutions with minimized perturbation to placements op-

timized for other design metrics (e.g., wirelength and routability).

• A clock-aware packing technique with probabilistic clock distribution
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estimation for producing clock- and placement-friendly netlists.

• Won the first-place award of ISPD 2017 clock-aware FPGA placement

contest [80] on industry-strength benchmarks released by Xilinx [29] and

outperforms the second- and third-place winners by 3.3% and 9.7%, re-

spectively, in routed wirelength with competitive runtime.

The rest of this section is organized as follows. Section 3.3.1 reviews

the preliminaries. Section 3.3.2 presents our UTPlaceF 2.0 algorithms. Sec-

tion 3.3.3 shows the experimental results, followed by the summary in Sec-

tion 3.3.4.

3.3.1 Preliminaries and Overview

In this section, we will briefly introduce the clock constraints and the

problem formulation for clock-aware placement.

3.3.1.1 Clock Constraints for Placement

Restricted by the clocking architecture, two major constraints, namely

clock region constraint and half-column region constraint, are imposed in the

placement stage.

The clock region constraint is introduced by the limited clock rout-

ing/distribution tracks and it requires the global clock demand in each clock

region must be equal to or less than 24 in our target FPGA architecture. Exact

global clock demand in each clock region requires detailed clock routing, which
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Figure 3.2: Illustration of the clock demand calculation for clock regions and
half-column regions. Different colors represent different clocks. (a) Global
clock demand calculation for clock regions. (b) Clock demand calculation for
half-column regions within a clock region.

is often computationally expensive in practice. Therefore, we approximate it

using the bounding box model for the sake of efficiency. More specifically, for

a clock region, its global clock demand is defined as the total number of clock

nets that have their bounding boxes intersected with it. Figure 3.2(a) illus-

trates how global clock demands are calculated for a simple placement with

three clock nets. The top layer shows the sink distribution, the three middle

layers represent the spanning clock regions of each clock and the layer in the

bottom gives the final global clock demand in each clock region.

Similarly, imposed by the limited leaf clock tracks, the half-column

region constraint requires that each half-column region can only contain at

most 12 clocks. Figure 3.2(b) illustrates the clock demand calculation for
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half-column regions within a clock region. Different from clock regions, the

clock demand in a half-column region is only the number of clocks inside it,

regardless of the clock net bounding boxes.

3.3.1.2 Problem Formulation

In modern FPGA placement, the optimization usually includes multiple

objectives, such as wirelength, which is often measured by half-perimeter wire-

length (HPWL), and routability. Wirelength is usually regarded as the major

objective since it is a good first-order approximation of many other metrics,

e.g., power and timing. However, pure wirelength-driven placement can result

in routing quality degradation and even unroutable solutions. Therefore, in

UTPlaceF 2.0, wirelength and routability are optimized simultaneously.

To produce legal placement solutions, apart from clock constraints, the

packing rules described in Section 2.2 also need to be satisfied when multiple

LUTs and FFs are placed into the same CLB site.

With all constraints and objectives defined, we now define our clock-

aware placement problem as follows.

Problem 1 (Clock-Aware Placement) Given a netlist of LUTs, FFs,

DSPs, RAMs, and I/Os, produce a legal placement solution with minimized

routed wirelength, meanwhile packing rules, clock region constraint, and half-

column region constraint are satisfied.
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3.3.2 UTPlaceF 2.0 Algorithms

3.3.2.1 UTPlaceF 2.0 Overview

Clock-Aware Packing

Clock-Aware Legalization

Wirelength-Driven Placement

Clock- and Routability-Driven Placement

Netlist

Flat Initial Placement

Gaussian-Based Clock
Distribution Estimation

Packing

CLB-Level Global Placement

Clock Region Assignment

Half-Column Region Assignment

Clock-Aware Detailed Placement

Done

Quadratic Programming +
Rough Legalization +

Density-Preserving Global Move

HPWL Gap
< 50%?

Routing Congestion Estimation +
History-Based Cell Inflation

Quadratic Programming

Clock Region Assignment

CR-Wise Rough Legalization

CR-Wise DSP, RAM,
I/O Legalization

Clock-Aware Density-
Preserving Global Move

HPWL Gap
< 5%?

Return

No

Yes

No

Yes

Figure 3.3: The overall flow of UTPlaceF 2.0.

The overall flow of UTPlaceF 2.0 is shown in Figure 3.3. UTPlaceF 2.0

is a natural extension of UTPlaceF (Section 2.3) and consists of five major

steps: (1) flat initial placement (FIP); (2) packing; (3) CLB-level global place-

ment; (4) legalization; (5) detailed placement. On top of conventional wire-

length and routability optimizations performed in UTPlaceF, clock constraints

are explicitly considered throughout the UTPlaceF 2.0 framework.

The FIP is responsible for producing the physical location and rout-
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ing congestion information of each cell to better guide decision making in the

packing stage. It consists of two phases: (1) pure wirelength-driven phase;

(2) clock- and routability-driven phase. In each iteration of the first phase, a

quadratic analytical placement utilizing hybrid [76] and bound-to-bound [70]

net models is solved to minimize wirelength, followed by the rough legalization

technique proposed in [48] for cell overlap removal. After that, a sequence of

global moves is performed to further refine roughly-legalized placement while

preserving cell density. In the second phase, besides the conventional routabil-

ity optimization, an additional clock region assignment (see Section 3.3.2.2)

step is called after the quadratic placement. It produces a cell-to-clock-region

assignment solution that satisfies the clock region constraint. Then, the rough

legalization and DSP/RAM block legalization are only performed within each

clock region to honor the assignment result. UTPlaceF 2.0 stops FIP once the

wirelength converges.

In the packing stage, a probability-based estimation is performed to

predict the clock distribution in the final placement solution. Then, by incor-

porating the estimated clock information into the original packing algorithm

in UTPlaceF, the packing in UTPlaceF 2.0 is enhanced to be clock-aware (see

Section 3.3.2.3).

The CLB-level global placement is performed immediately after our

packing to further optimize the placement for the post-packing netlist. It

shares the same framework with the second phase of FIP and uses the final

solution of FIP as the starting point to speed up the placement convergence.
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In the legalization stage, while minimizing the conventional objective of

pin movement, the clock region constraint and half-column region constraint

are rigorously honored by our clock region assignment technique and half-

column region assignment technique (see Section 3.3.2.4), respectively.

Finally, detailed placement techniques in UTPlaceF are extended to

be clock-aware and maintain the clock legality throughout the wirelength and

routability optimization process before the final solution is produced.

3.3.2.2 Clock Region Assignment

Clock region assignment is a key step in UTPlaceF 2.0 to satisfy the

clock region constraint. It is intensively called throughout major steps, such

as FIP, CLB-level global placement, and legalization, in UTPlaceF 2.0. There-

fore, it has a significant impact on both solution quality and runtime. Here

we formally define the clock region assignment problem as follows.

Problem 2 (Clock Region Assignment) Given a roughly-legalized place-

ment and logic resource capacity of each clock region, assign cells to clock

regions to minimize total pin movement without logic resource or global clock

overflow.

Given the notations defined in Table 3.1, Problem 2 can be written as a binary

minimization problem with linear and boolean logical constraints as shown in

Formulation (3.1).
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Table 3.1: Notations Used in Clock Region Assignment

V The set of cells.
Vs The set of cells of resource type s ∈ {CLB, DSP, RAM}.
Pi The number of pins in cell i.
As
i The cell i’s demand for resource type s ∈ {CLB, DSP, RAM}.
R The set of clock regions.
Cs
j The clock region j’s capacity for resource type s ∈ {CLB, DSP, RAM}.

Di,j The physical distance between cell i and clock region j.
E The set of clock nets.
Zi,e A binary value represents whether cell i is in clock net e.

L+j The set of clock regions that are left to or in the same column of clock region j.

R+
j The set of clock regions that are right to or in the same column of clock region j.

B+j The set of clock regions that are below or in the same row of clock region j.

T +
j The set of clock regions that are above or in the same row of clock region j.

min
x

∑

i∈V

∑

j∈R
Pi Di,j xi,j, (3.1a)

s.t. xi,j ∈ {0, 1},∀i ∈ V ,∀j ∈ R, (3.1b)

∑

j∈R
xi,j = 1,∀i ∈ V , (3.1c)

∑

i∈V
Asi xi,j ≤ Cs

j ,∀j ∈ R,∀s ∈ {CLB, DSP, RAM} (3.1d)

∑

e∈E

[( ∨

q∈L+j

Zi,e xi,q

)
∧
( ∨

q∈R+
j

Zi,e xi,q

)
∧

( ∨

q∈B+j

Zi,e xi,q

)
∧
( ∨

q∈T +
j

Zi,e xi,q

)]
≤ 24,∀j ∈ R. (3.1e)

Formulation (3.1) optimizes over binary variables xi,j to minimize the

objective (3.1a) of total pin movement. If cell i ∈ V is assigned to clock region

j ∈ R, then xi,j = 1, otherwise xi,j = 0. The constraint (3.1c) ensures that
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(a) (b) (c) (d)

Figure 3.4: Illustration of the sets of clock regions (dashed regions) (a) L+
j ,

(b) R+
j , (c) B+

j , and (d) T +
j of clock region j (red) defined in Table 3.1.

each cell is assigned to exactly one clock region. The constraint (3.1d) guaran-

tees that the demands are no greater than the capacities for all logic resource

types (e.g., CLB, DSP, and RAM) in each clock region. The boolean logical

constraint (3.1e) ensures that the clock region constraint is satisfied. The sets

of clock regions L+
j , R+

j , B+
j , and T +

j of any clock region j are illustrated in

Figure 3.4. Intuitively, for a given clock region j, if and only if a clock net has

cells located in all of L+
j , R+

j , B+
j , and T +

j , its bounding box would intersect

with j and occupy global clock resource in it. The constraint (3.1e) sums up

all such clock nets for each clock region and restricts the clock usage no more

than the clock capacity, which is 24 in our target FPGA architecture.

3.3.2.2.1 The Relaxation Algorithm

With a proper modeling, the boolean logical constraint (3.1e) can be trans-

formed into a set of linear constraints and then Formulation (3.1) can be opti-

mally solved utilizing integer linear programming techniques. However, integer

linear programming is computationally expensive and suffers from unafford-
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able runtime for our application. Therefore, here we relax Formulation (3.1) to

an easier problem that can be efficiently solved, as shown in Formulation (3.2).

min
x

∑

i∈V

∑

j∈R
(Pi Di,j + λi,j) xi,j, (3.2a)

s.t. xi,j ∈ {0, 1},∀i ∈ V ,∀j ∈ R, (3.2b)

∑

j∈R
xi,j = 1,∀i ∈ V , (3.2c)

∑

i∈V
Ai xi,j ≤ Cj,∀j ∈ R. (3.2d)

Compared with the original Formulation (3.1), Formulation (3.2) has two

major differences: (1) instead of considering the capacity constraint (3.1d)

simultaneously for all logic resource types, here we only consider the capacity

constraint (3.2d) for one resource type at a time (i.e., we consider different

resource types separately); (2) we remove the boolean logical constraint (3.1e)

and add a penalty multiplier λi,j for each potential cell i ∈ V to clock region

j ∈ R assignment xi,j to the objective (3.2a).

The main idea of our relaxation can be explained as follows. We first

ignore the clock region constraint (3.1e) and only honor each logic resource

constraint separately. Each time after solving Formulation (3.2), we properly

penalize assignments causing clock overflows by updating the corresponding

penalty multipliers λi,j in the objective (3.2a). By repeating the process of solv-

ing and updating Formulation (3.2), the assignment will progressively converge

to a clock-feasible solution.
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Algorithm 9: Clock Region Assignment with Relaxation

Input : A roughly-legalized placement.
Output: A movement-minimized assignment without logic

resource or clock overflows.
1 Divide cells V into three groups, VCLB, VDSP, and VRAM, based on

their logic resource types.;
2 λi,j ← 0,∀i ∈ V ,∀j ∈ R;
3 while clock overflow exists do
4 foreach U ∈ {VCLB,VDSP,VRAM} do
5 Solve Formulation (3.2) for U (See Section 3.3.2.2.2);
6 end
7 Update penalty multiplier λ (See Section 3.3.2.2.3);

8 end

The proposed relaxation-based clock region assignment algorithm is

summarized in Algorithm 9. Cells are first divided into three groups based

on their resource types, including CLB, DSP, and RAM, at line 1. Then all

penalty multipliers λi,j,∀i ∈ V , ∀j ∈ R are initialized to zero at line 2, which

degenerates the Formulation (3.2) into a pure logic-resource-constrained pin-

movement minimization problem without clock legality consideration. Within

the loop from line 3 to line 8, we first solve Formulation (3.2) for each cell

group under current penalty multiplier settings, and then at line 7, penalty

multipliers λi,j are updated according to the assignment solutions produced

from line 4 to line 6. The penalty multipliers are incrementally updated to

penalize assignments causing clock overflows, and new assignments produced

by the Formulation (3.2) with these updated penalty multipliers will be pro-

gressively closer to clock-legal solutions after each iteration. The process of

solving and updating Formulation (3.2) from line 3 to line 8 is repeated until
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a clock-overflow-free assignment is reached.

3.3.2.2.2 Minimum-Cost Flow Transformation

One notable merit of our relaxation in Formulation (3.2) is that it can be

transformed into a minimum-cost-flow problem, which can be solved by many

mature and efficient algorithms [4].

V R
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vi

v|V|

s t
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Figure 3.5: The minimum-cost flow representation of Formulation (3.2). Pair
of numbers (e.g., Pi Di,j + λi,j,∞) on each edge represents cost and capacity,
respectively, and ∞ means unlimited capacity.

Figure 3.5 illustrates the minimum-cost flow representation of Formu-

lation (3.2). If all cells in V have unit resource demand (i.e., Ai = 1,∀i ∈ V),

optimally solving Formulation (3.2) is equivalent to computing the minimum-

cost flow of amount
∑

i∈V Ai on the graph. For cases with non-unit re-

source demands, however, the assignment solutions corresponding to their

minimum-cost flow results may contain cells that are split into multiple clock

regions, which require extra post-processing steps and slight relaxation on con-

straint (3.2d) to guarantee solution feasibility. In UTPlaceF 2.0, we always
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apply unit cell resource demand (Ai = 1) to ensure the solutions produced by

our minimum-cost flows transformation are feasible.

3.3.2.2.3 Penalty Multiplier Updating

Algorithm 9 is a generalized relaxation framework for solving the clock region

assignment problem. One key step in this framework is to update the penalty

multiplier λ after each assignment iteration. Different updating strategies can

converge to different feasible solutions. In this section, we will only discuss

the updating method that is applied in UTPlaceF 2.0. Its effectiveness is

demonstrated by our experiments.

The guiding idea of our λ updating method is that we hope clock over-

flows can be mitigated by forbidding some clocks from occupying the over-

flowed clock regions. We observe that to block a clock net from taking clock

resources in a given clock region, all the cells in this clock net must be strictly

restricted in the region below, above, left to, or right to the clock region, as

shown in Figure 3.6. Otherwise, the clock bounding box must intersect with

the clock region. Thus, intuitively, clock congestion can be resolved by it-

eratively pushing clock nets to these four escaping regions corresponding to

overflowed clock regions.

Inspired by this observation, we propose our penalty multiplier updat-

ing method summarized in Algorithm 10. We first choose the most overflowed

clock region as our target clock region to resolve at line 1 and locate the four

escaping regions illustrated in Figure 3.6 for the target clock region from line
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Algorithm 10: Penalty Multiplier Updating for Clock Region
Constraint

Input : Penalty multiplier λ. The maximum clock overflow
descent step Imax for each clock region in each iteration.

Output: An updated penalty multiplier λ that can produce less
clock overflow.

1 Find the clock region r with the largest clock overflow Omax;
2 Br ← the region below r;
3 Tr ← the region above r;
4 Lr ← the region left to r;
5 Rr ← the region right to r;
6 l← ∅;
7 foreach clock e ∈ E occupying clock resource of r do
8 foreach region b ∈ {Br, Tr, Lr, Rr} do
9 l← l ∪ {Cost(e, b)} (See Equation (3.3));

10 Sort candidates in l by ascending order of their cost;
11 I ← min(Omax, Imax);
12 i← 0;
13 chosen[e]← false,∀e ∈ E ;
14 foreach Cost (e, b) ∈ sorted l do
15 if chosen[e] or ¬IsFeasible(e, b,λ) then continue;
16 foreach cell i in clock e do
17 for each clock region j that is not in region b do
18 λi,j ←∞;

19 chosen[e]← true;
20 i← i+ 1;
21 if i ≥ I then return;
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(a) (b) (c) (d)

Figure 3.6: The four escaping regions (green) that are defined as the regions
(a) below, (b) above, (c) left to, and (d) right to a given clock region (red),
respectively. To avoid employing clock resources of the given clock region,
all cells of a clock net must be simultaneously placed into one of these four
escaping regions.

2 to line 5. Then from line 6 to line 9, for clock nets occupying clock resources

in the target clock region, we compute their moving costs to each of these four

escaping regions and store the calculation results as candidates for later over-

flow resolving. Within the loop from line 14 to line 21, these candidates are

accessed in the ascending order of their costs. For each candidate, at line 15,

we first ensure that no other candidate associated with the same clock net has

been chosen and then call function IsFeasible to reject candidates leading to

infeasible solutions. The feasibility checking and function IsFeasible will be

further discussed later in this section. If a candidate is feasible, we block all

assignments between cells in the candidate clock net and clock regions outside

the candidate escaping region by setting the corresponding penalty multipliers

to infinity from line 16 to line 18. This operation prevents the target clock

region from being further employed by the candidate clock in the later assign-

ment iterations. The loop from line 14 to line 21 is repeated until all overflows

in the target clock are fully resolved or the number of resolved overflows reaches
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the limit Imax, which is 2 in UTPlaceF 2.0 by default. Intuitively, Imax is the

maximum descent step for clock overflow resolving. By using a smaller Imax,

clock congestion can be resolved more smoothly and evenly among different

clock regions with the cost of more assignment iterations.

Now we explain the function Cost(e, b) that computes the cost of push-

ing clock e to escaping region b. The objective of our assignment is to minimize

the total pin movement. In addition, each cell movement may lead to logic

resource overflow in the target escaping region. Thus the cost consists of two

components: the pin movement cost and the logic resource cost, shown as

follows:

Cost(e, b) =
∑

i∈V(e)

(Pi di,b + αACLB
i + βADSP

i + γARAM
i ), (3.3)

where V(e) denotes the set of cells in clock net e, and di,b denotes the physical

distance between cell i and box region b. The trade-off weights α, β, and γ

are set to 5, 50, and 50, respectively, in our experiments.

The only thing left now is the feasibility checking function

IsFeasible(e, b,λ). For an intermediate solution with the logic resource

constraint satisfied, arbitrarily blocking a set of assignments cannot further

guarantee the existence of feasible solutions. For example, if clock nets are

restricted in small regions without enough logic resources to accommodate

all the cells, the corresponding assignment problem will be infeasible. One

straightforward method to avoid this issue is to solve the updated minimum-

cost flow for the graph in Figure 3.5 to check if a feasible solution exists before
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actually applying the new assignment blocking. However, this method is far

too cumbersome to be applied in our iterative framework, which motivates us

to propose a light-weight yet effective feasibility checking method.

s t

V;

V{p,q}

V{p}

V{q}

r1

r2

r3

1
X

i2V{p}

Ai
C1

Figure 3.7: Illustration of our maximum-flow-based feasibility checking. Num-
bers on edges represent their capacities.

Instead of solving the minimum-cost flow for the graph in Figure 3.5,

we construct a maximum-flow graph, as illustrated in Figure 3.7, to perform

fast feasibility checking. Here we are trying to assign a netlist with two clock

nets p and q to three clock regions r1, r2, and r3. We divide all cells into four

mutually exclusive groups V{p}, V{q}, V{p,q}, and V∅, based on the clock nets

they belong to, where Vp and Vq denote the groups of cells belonging only to p

and q, respectively, V{p,q} denotes the group of cells belonging to both p and q,

and V∅ is the set of cells without clock nets. In this graph construction, we only

introduce edges for unblocked assignments (λi,j 6=∞). In this example, clock p

cannot be assigned to r3 and clock q cannot be assigned to r1. Then, with the

proper edge capacity settings as shown in Figure 3.7, checking the assignment
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feasibility of Formulation (3.2) is equivalent to computing the maximum flow

of amount
∑

i∈V Ai in this graph. If the resulting maximum flow value is

equal to
∑

i∈V Ai, a feasible solution with the set of new assignment blocking

applied must exist, otherwise, the assignment problem is infeasible. It should

be noted that our maximum-flow-based checking are performed for different

resource types (e.g., CLB, DSP, and RAM) separately each time and we only

conclude the updated problem is feasible when all checkings are passed.

Compared with the minimum-cost flow graph in Figure 3.5, the problem

size is dramatically reduced by the clock grouping in the graph construction

in Figure 3.7. In addition, edge costs are removed in the maximum-flow graph

since we solve it only for feasibility checking purpose. Therefore, the proposed

maximum-flow-based technique enables a much faster yet reliable feasibility

checking process.

3.3.2.2.4 Speed-up Techniques

The minimum-cost flow formulation shown in Figure 3.5 is optimal for a given

λ and unit logic resource demand but it may suffer from long runtime for large

designs. Instead of solving flat minimum-cost flow problems, we here pro-

pose a geometric clustering technique to reduce the problem size by grouping

cells that are physically close and share the same set of clock nets together.

Our proposed geometric clustering technique can significantly speed up the

minimum-cost flow solving process while preserving good solution quality.

Here we use a simple example in Figure 3.8 to illustrate our clustering

145



{p}, 1{q}, 1

;, 1

;, 1

{p, q}, 1

{p, q}, 1

{p, q}, 1

{p, q}, 1

{p}, 1

{p}, 1

{p}, 1

{q}, 1

(a)

{p}, 3

{p}, 1
{q}, 2

;, 2

{p, q}, 2 {p, q}, 1

{p, q}, 1

(b)

Figure 3.8: Illustration of our geometric clustering technique. (a) Twelve
cells need to be assigned in the flat minimum-cost flow without the clustering
technique. (b) With our geometric clustering applied, the number of objects
needs to be assigned is reduced to seven. “S, A” pair (e.g., {p, q}, 1) on each
cell denotes the set of clock nets it belongs to and its logic resource demand,
respectively. ∅ means the cell does not belong to any clock nets.

idea. In this example, there are twelve cells and two clock nets p and q. The

“S, A” pair (e.g., {p, q}, 1) on each cell denotes the set of clock nets it belongs

to and its logic resource demand, respectively. If the flat minimum-cost-flow-

based assignment in Figure 3.5 is directly applied, we need to assign twelve

objects, as shown in Figure 3.8(a), in the problem. However, if we divide

all twelve cells into four bins based on the two-by-two geometric partitioning

shown in Figure 3.8 and cluster cells that have the same clock signatures within

each partition, the number of objects to be assigned will reduce to seven, as

146



shown in Figure 3.8(b).

min
x

∑

k∈K

∑

j∈R
(
Pk

Ak

Dk,j + λk,j) xk,j, (3.4a)

s.t. xk,j ∈ {0, 1, 2, . . . },∀k ∈ K,∀j ∈ R, (3.4b)

∑

j∈R
xk,j = Ak,∀k ∈ K, (3.4c)

∑

k∈K
xk,j ≤ Cj,∀j ∈ R. (3.4d)

With our clustering technique applied, instead of solving Formulation (3.2),

we solve a very similar Formulation (3.4), where K denotes the set of clusters,

Pk and Ak denote the total pin count and total logic resource demand of cells in

cluster k, and Dk,j denotes the physical distance between the average location

of cells in cluster k and clock region j. Besides, unit logic resource demand is

assumed for all cells (not clusters).

Formulation (3.4) can still be solved utilizing the minimum-cost flow

transformation illustrated in Figure 3.5. However, comparing to Formula-

tion (3.2), several key differences need to be emphasized.

Firstly, since inaccuracy is injected to pin movement calculation by

using averaged pin count Pk

Ak
and averaged cell locations for Dk,j in the objec-

tive (3.4a), less optimal solutions will be obtained as the cluster size increases.

On the other hand, a larger cluster size can dramatically reduce the problem

size, which results in much faster runtime. Therefore, with different parti-

tion sizes, we can achieve different tradeoffs between quality and runtime. In

UTPlaceF 2.0, the partition width and height are empirically set to 5 CLB
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sites.

Secondly, in the minimum-cost flow graph with our clustering technique

applied, each assignment object represents a cluster of cells and does not have

unit logic resource demand anymore (i.e., Ak ≥ 1). Thus, the final minimum-

cost flow solution of Formulation (3.4) might assign non-zero flows to more

than one edge of an assignment object. It is physically equivalent to splitting

a cluster into subgroups and assigning them to multiple clock regions. For

each of these split cases, to decide which cell goes to which clock region, one

more level of minimum-cost flow corresponding to Formulation (3.2) is needed.

Note that, this second-level minimum-cost flow is only for cells within the

split cluster and the set of clock regions that this cluster has been assigned to.

Since we assume unit resource demand for all cells, the split assignment would

not happen again in these second-level minimum-cost flows and the solution

feasibility can be guaranteed.

3.3.2.3 Clock-Aware Packing

Packing is responsible for clustering LUTs and FFs into CLBs that

satisfy all packing rules, meanwhile, optimizing various design metrics such

as power, timing, and channel width. In UTPlaceF (Section 2.3), packing is

performed by pairwisely merging cells based on a set of attraction functions,

which grant higher priorities to cell pairs that are physically closer and share

more small nets. Although the packing algorithm in UTPlaceF is effective

for wirelength and routability optimization, it is no longer able to guarantee
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solution quality with the newly introduced clock region constraint.

p1

q1

r2: Forbid pr1: Forbid q

Figure 3.9: An example to show the necessity of clock-aware packing. p and
q denote two clock nets. p1 and q1 are two cells belonging to clock p and q,
respectively.

One example to illustrate the necessity of clock awareness for packing

is shown in Figure 3.9. In this example, clock q is forbidden in clock region

r1 and clock p is forbidden in clock region r2 according to the clock region

assignment result in FIP. If we, unfortunately, cluster p1 and q1 together, the

packing solution would become infeasible since no clock region can simulta-

neously contain clock p and q. Therefore, it is critical to making packing

algorithms clock-aware for the solution feasibility.

3.3.2.3.1 Probability-Based Clock Distribution Estimation

One common idea to avoid the case shown in Figure 3.9 is to let packing al-

gorithms honor the clock region assignment solution after FIP. However, this

idea imposes another question: how to deal with clock regions with spare

global clock resources. In general, not all the global clock resources are em-

ployed after clock region assignment, so if we can further allocate these spare

resources to some clock nets, packing algorithms might be able to explore a

larger solution space and produce even better packing solutions. Motivated
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by this reason, we propose a probabilistic model to estimate the probability

of each clock occupying each clock region in the final placement solution. The

estimation results will be incorporated into our new packing algorithm (See

Section. 3.3.2.3.2) to help us smartly make use of those spare clock resources.
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Figure 3.10: Distributions of cell displacement in the final placement w.r.t
the FIP in (a) x-direction and (b) y-direction based on CLK-FPGA05 in the
ISPD 2017 contest benchmark suite. All placement solutions are generated by
UTPlaceF without clock legality consideration.

The potential clock distribution mismatch between FIP and the final

placement is introduced by the cell movement between them. We collect the

displacement of all cells in the final placement solution w.r.t. their locations in

the FIP for a representative benchmark and the result is shown in Figure 3.10.

It can be seen that the cell displacement in both x- and y-directions have a bell-

shaped distribution around zero. So it is reasonable to make the assumption

that the cell displacement satisfies the Gaussian distribution with a mean value
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of zero in both x- and y-directions, which can be written as follows:

X ′ −X ∼ N (0, σ2
x), (3.5a)

Y ′ − Y ∼ N (0, σ2
y). (3.5b)

where (X ′, Y ′) and (X, Y ) denote (x, y) coordinates of cells in the final place-

ment and FIP, respectively, N (µ, σ2) represents a Gaussian distribution with

mean value µ and standard deviation σ, and σx and σy are estimated standard

deviations for cell displacement in x- and y-directions.

Given the assumption in Equation (3.5), a cell i at location (xi, yi) in

FIP, and any region r with bounding box (xlr, ylr, xhr, yhr), the probability

of cell i being placed into the region r in the final placement, denoted by hi,r,

can be written as follows:

hi,r =
(
CDF(xhr, xi, σx)− CDF(xlr, xi, σx)

)

(
CDF(yhr, yi, σy)− CDF(ylr, yi, σy)

)
,

(3.6)

where CDF(x, µ, σ) is the cumulative distribution function of the Gaussian

distribution X ∼ N (µ, σ2) evaluated at x. It represents the probability that

X takes value less than or equal to x. CDF is defined in Equation (3.7), where

erf(x) denotes the error function [5]. Figure 3.11(a) gives a visual illustration

of the cell-to-region probability calculation process.

CDF(x, µ, σ) =
1

2

[
1 + erf

(x− µ
σ
√

2

)]
. (3.7)

Now, we show the method to calculate the probability of clock region
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Figure 3.11: (a) A visual illustration for the cell-to-region probability calcula-

tion shown in Equation (3.6). (b) Nine sets of clock regions, R
(j)
0 , R

(j)
1 , . . . , R

(j)
8 ,

corresponding to clock region j (red).

j having clock demand from clock net k in the final placement. Given a clock

region j, we divide all clock regions into nine sets, as shown in Figure 3.11(b),

R(j)
0 ,R(j)

1 , . . . ,R(j)
8 , where R(j)

0 contains only clock region j. It is easy to see

that the bounding box of any clock net k does not intersect with the clock

region j if and only if all cells in the clock net k are placed in one of the

four regions that are above, below, to the left of, and to the right of the clock

region j (R(j)
0 ), i.e., R(j)

1 ∪ R(j)
2 ∪ R(j)

3 , R(j)
5 ∪ R(j)

6 ∪ R(j)
7 , R(j)

7 ∪ R(j)
8 ∪ R(j)

1 ,

and R(j)
3 ∪ R(j)

4 ∪ R(j)
5 . Therefore, the probability of clock region j not being

occupied by clock net k, denoted by Hj,k, can be defined using Equation (3.8).

Hj,k =
∑

(l,m,n)∈
{(1,2,3),(3,4,5),
(5,6,7),(7,8,1)}

∏

i∈V(k)

(h
i,R(j)

l
+h

i,R(j)
m

+h
i,R(j)

n
)−

∑

l∈{1,3,5,7}

∏

i∈V(k)

h
i,R(j)

l
. (3.8)

Finally, the probability of clock region j having clock demand from clock net
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k in the final placement, denoted by Hj,k, can be defined as follows:

Hj,k = 1−Hj,k. (3.9)

3.3.2.3.2 Clock-Aware Packing Attraction Function

UTPlaceF 2.0 adopts the UTPlaceF packing framework, which consists of the

maximum-weighted-matching-based and BestChoice-based [60] clustering al-

gorithms. Both algorithms rely on attraction functions to evaluate the good-

ness of any pairwise clustering and iteratively merge high-attraction object

pairs to form CLBs. To produce clock-friendly CLB-level netlists for place-

ment, the packing attraction functions in UTPlaceF are enhanced to be clock-

aware in UTPlaceF 2.0.

The original attraction functions in UTPlaceF for connected objects

consist of two components. The first component is the distance score, which

exponentially penalizes objects that are physically far away in FIP. The second

component is the connectivity score, which grants higher priorities to objects

that share more small nets [40]. The original packing attraction function for

two connected objects i and j then can be generalized as follows:

φi,j =
(

1− exp
(
γ(di,j −DU)

)) ∑

e∈Ei∩Ej

k

|e| − 1
. (3.10)

where di,j denotes the physical distance between i and j in FIP, Ei∩Ej denotes

the set of nets that are shared by i and j, |e| represents the number of pins in

net e, k is 2 for two-pin nets and 1 for other nets, and γ and DU are tuning
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parameters determined experimentally.

The proposed new attraction function is the same as the original one,

except that a new term is introduced to account for the clock legality. It is

described by the following expression,

φi,j =
(

1− exp
(
γ(di,j −DU)

)) ∑

e∈Ei∩Ej

k

|e| − 1

∏

k∈Ei∪Ej
Ht,k. (3.11)

where Ei ∪ Ej denotes the set of clock nets that contain at least one of cell i

and cell j, t represents the clock region that the center of gravity of i and j

falls into, and Ht,k is the probability defined in Equation (3.9). Here we use

clock region t as the estimated target clock region to place the cluster of i and

j. Intuitively, the new term represents the probability that a cluster can be

placed into its estimated target clock region without any clock conflicts. So

integrating this new term to the original attraction function helps to block out

clustering cases that are likely to violate the clock region constraint.

The same clock penalty term is applied to all attraction functions in

UTPlaceF to make the whole packing flow clock-aware. With our enhanced

clock-aware attraction functions in UTPlaceF 2.0, better wirelength in the

final solutions is demonstrated by our experiments.

3.3.2.4 Half-Column Region Assignment

As shown in Figure 3.3, the half-column region constraint is explicitly

honored in the legalization stage by our half-column region assignment tech-

nique. Here we formally define the half-column region assignment problem as
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follows.

Problem 3 (Half-Column Region Assignment) Given a roughly-legalized

placement, logic resource capacity of each half-column region, and a feasible

clock region assignment solution, assign cells within each clock region to half-

column regions to minimize total pin movement without logic resource or clock

overflow.

Problem 3 is very similar to the clock region assignment problem defined in

Problem 2. It can also be formulated into Formulation (3.1) but with a simpler

clock constraint (3.1e). So the same relaxation and minimum-cost flow frame-

work described in Section 3.3.2.2.1 and Section 3.3.2.2.2 can be seamlessly

applied to solve the half-column region assignment problem as well.

The only notable difference compared with the clock region assign-

ment is the method to update penalty multipliers for clock overflow resolving.

Our proposed penalty multiplier updating algorithm for half-column region

constraint is summarized in Algorithm 11. It should be noted that, given a

feasible clock region assignment solution, the half-column region assignment

can be performed within each clock region independently without impacting

clock legality. So the scope of Algorithm 11 is only limited in a single clock

region.

Within each clock region, we first find the target half-column region

with the largest clock overflow at line 1. Then, the cost of moving each clock

out of the target half-column region is calculated and stored in a list from
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Algorithm 11: Penalty Multiplier Updating for Half-Column
Region Constraint

Input : Penalty multiplier λ.
Output: An updated penalty multiplier λ that will result in less

clock overflow.
1 Find the half-column region r with the largest clock overflow Omax;
2 foreach clock e in r do
3 l← l ∪ {Cost(e, r)} (See Equation (3.12));
4 end
5 Sort candidates in l by ascending order of their cost;
6 i← 0;
7 foreach Cost (e, r) ∈ sorted l do
8 if ¬IsFeasible(e, r,λ) then continue;
9 foreach cell i in clock e do

10 λi,r ←∞;
11 end
12 i← i+ 1;
13 if i ≥ Omax then return;

14 end

line 2 to line 4. The cost of moving clock e out of half-column r is defined as

follows:

Cost(e, r) =
∑

i∈V(e)∩V(r)

Pi, (3.12)

where V(e)∩V(r) denotes the set of cells that are simultaneously in clock e and

half-column region r, and Pi represents the total number of pins associated

with cell i.

In the loop from line 7 to line 14, we iteratively pick the clock with

the smallest moving cost and block it out of the target half-column region

in the subsequent assignment iterations. A feasibility checking similar to the
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one illustrated in Figure 3.7 is performed at line 8 to ensure the existence of

feasible assignments after the edge blocking. This process is repeated until the

number of iterations hits the overflow limit at line 13.

3.3.3 Experimental Results

UTPlaceF 2.0 is implemented in C++ and compiled by g++ 4.7.2. The

official contest evaluation results conducted by Xilinx is used to demonstrate

the effectiveness of UTPlaceF 2.0. All the experiments are performed on a

Linux machine running with 3.40 GHz Intel Core i7 CPU and 32 GB RAM,

using only one CPU core. The benchmark suite released by Xilinx for the

ISPD 2017 clock-aware FPGA placement contest was used to evaluate the

efficiency of UTPlaceF 2.0.

The characteristics of the ISPD 2017 benchmark suite are listed in

Table 3.2. This benchmark suite consists of industry-strength designs with

gate counts ranging from 0.45 million to about 1 million. Several designs in

this suite have extremely high resource utilization and clock usage.

As UTPlaceF 2.0 won the first-place award of the ISPD 2017 clock-

aware FPGA placement contest, we here compare our results with the second-

and third-place contest winners as shown in Table 3.3. Metrics “WL” and

“RT” represent the routed wirelength and runtime, while “WLR” and “RTR”

represent the wirelength and runtime ratios normalized to UTPlaceF 2.0. It

can be seen that UTPlaceF 2.0 achieves the best overall routed wirelength and

outperforms by 3.3% and 9.7% in routed wirelength compared with the other
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Table 3.2: ISPD 2017 Placement Contest Benchmarks Statistics

Designs #LUT #FF #RAM #DSP #Clock

CLK-FPGA01 211K 324K 164 75 32
CLK-FPGA02 230K 280K 236 112 35
CLK-FPGA03 410K 481K 850 395 57
CLK-FPGA04 309K 372K 467 224 44
CLK-FPGA05 393K 469K 798 150 56
CLK-FPGA06 425K 511K 872 420 58
CLK-FPGA07 254K 309K 313 149 38
CLK-FPGA08 212K 257K 161 75 32
CLK-FPGA09 231K 358K 236 112 35
CLK-FPGA10 327K 506K 542 255 47
CLK-FPGA11 300K 468K 454 224 44
CLK-FPGA12 277K 430K 389 187 41
CLK-FPGA13 339K 405K 570 262 47

Resources 538K 1075K 1728 768 -

two contest winners, respectively. Running in a single thread, UTPlaceF 2.0

completes the largest benchmark CLK-FPGA13 (0.96M cells) in 20 minutes.

We also report the runtime breakdown of UTPlaceF 2.0 in Fig-

ure 3.12(a). On average, the majority (68.4%) of the total runtime is taken by

FIP, while the detailed placement, CLB-level global placement, packing, and

legalization consume 20.0%, 5.3%, 3.3%, and 0.3% of the total runtime, respec-

tively. We further divide the runtime of FIP into four components, as shown

in Figure 3.12(b), where the preconditioned conjugate gradient for quadratic

programming takes 88.8% of the FIP runtime, followed by 4.9% and 4.2% for

rough legalization and density-preserving global move, respectively, and only

0.7% is taken by the clock region assignment.
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Table 3.3: Routed Wirelength (WL in 103) and Runtime (RT in seconds) Compar-
ison with the Contest Winners

Benchmark
2nd place 3rd place UTPlaceF 2.0 (1st place)

WL RT WLR RTR WL RT WLR RTR WL RT WLR RTR

CLK-FPGA01 2209 3023 1.001 5.68 2269 354 1.027 0.67 2208 532 1.000 1.00
CLK-FPGA02 2274 3153 0.998 6.15 2504 333 1.099 0.65 2279 513 1.000 1.00
CLK-FPGA03 6229 4066 1.164 3.91 5803 666 1.084 0.64 5353 1039 1.000 1.00
CLK-FPGA04 3817 3077 1.032 4.33 4086 464 1.105 0.65 3698 711 1.000 1.00
CLK-FPGA05 4995 3631 1.065 3.87 5181 680 1.104 0.72 4692 939 1.000 1.00
CLK-FPGA06 5606 3836 1.003 3.60 6217 695 1.112 0.65 5589 1066 1.000 1.00
CLK-FPGA07 2505 3953 1.024 4.68 2676 410 1.095 0.49 2445 845 1.000 1.00
CLK-FPGA08 1990 4395 1.055 8.31 2057 277 1.091 0.52 1886 529 1.000 1.00
CLK-FPGA09 2583 5428 0.995 6.45 2814 414 1.084 0.49 2597 842 1.000 1.00
CLK-FPGA10 4770 3305 1.069 3.39 4840 516 1.084 0.53 4464 974 1.000 1.00
CLK-FPGA11 4208 4341 1.006 4.06 4777 548 1.142 0.51 4184 1068 1.000 1.00
CLK-FPGA12 3377 4949 1.002 6.39 3740 413 1.110 0.53 3369 774 1.000 1.00
CLK-FPGA13 3921 3748 1.019 3.20 4320 548 1.123 0.47 3848 1172 1.000 1.00

Norm. - - 1.033 4.92 - - 1.097 0.58 - - - -

68.4%

FIP

5.3%

GP

3.3%

Packing

0.3% Legal.

20%

DP

2.7%

Others

(a)

4.9%
Rough Legal.

4.2%

Global Move

0.3%

Clock Reg. Assign.

88.8%

PCG

1.4%

Others

(b)

Figure 3.12: The runtime breakdown of (a) UTPlaceF 2.0 and (b) flat initial
placement (FIP).

3.3.3.1 Efficiency Validation of Maximum-Flow-Based Feasibility
Checking

We validate the efficiency of our maximum-flow-based feasibility check-

ing proposed in Section 3.3.2.2.3 by experiments shown in Table 3.4. The

column 2 - 5 separately list the number of solvings (# Solving) and total solv-

ing time (ST) of minimum-cost flow (MCF) and maximum flow (MF) for each

benchmark. The column 6 gives the total solving time taken by MCF and MF.
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Without the maximum-flow-based feasibility checking, an MCF instead of an

MF solving is required to check if the updated penalty multipliers are feasible.

In this case, our clock region assignment would become a pure MCF-based

algorithm. We project the required solving time of it by Equation (3.13) and

report the results in the column 7 of Table 3.4. The overall speedup of “MCF

+ MF” over “Pure MCF” for each benchmark is listed in the last column of

Table 3.4.

Proj. Pure MCF ST =
MCF ST

# MCF Solving
(# MCF Solving + # MF Solving)

(3.13)

Table 3.4: Runtime Speedup by Applying Maximum-Flow-Based Feasibility Check-
ing

Benchmark
MCF MF MCF + MF Proj. Pure MCF

Speedup
#Solving ST (sec) #Solving ST (sec) ST (sec) ST (sec)

CLK-FPGA01 90 0.96 0 0.00 0.96 0.96 ×1.00
CLK-FPGA02 120 1.19 60 0.01 1.20 1.79 ×1.49
CLK-FPGA03 738 22.10 1227 0.34 22.44 58.84 ×2.62
CLK-FPGA04 219 4.25 221 0.05 4.30 8.54 ×1.99
CLK-FPGA05 171 4.57 168 0.05 4.62 9.06 ×1.96
CLK-FPGA06 282 9.58 342 0.11 9.69 21.20 ×2.19
CLK-FPGA07 84 0.91 0 0.00 0.91 0.91 ×1.00
CLK-FPGA08 96 0.77 0 0.00 0.77 0.77 ×1.00
CLK-FPGA09 87 0.95 0 0.00 0.95 0.95 ×1.00
CLK-FPGA10 222 4.15 159 0.03 4.18 7.12 ×1.70
CLK-FPGA11 216 4.79 153 0.03 4.82 8.18 ×1.70
CLK-FPGA12 123 1.88 42 0.01 1.89 2.52 ×1.33
CLK-FPGA13 93 1.61 12 0.01 1.62 1.82 ×1.12

It can be observed that MF is about one to two orders of magnitude

faster than MCF in our experiments. By applying the maximum-flow-based

feasibility checking, we can achieve up to ×2.6 overall speedup. Note that

the runtime of MCF is dependent to the partition size mentioned in Sec-

tion 3.3.2.2.4 but the MF-based checking is not. Therefore, even more speedup

can be achieved if smaller partitions are used in the clock region assignment.
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3.3.3.2 Trade-off of Different Partition Sizes
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Figure 3.13: Trend of HPWL and clock region assignment runtime with differ-
ent partition sizes for clustering (Section 3.3.2.2.4) on benchmark CLK-FPGA05.
All HPWL and runtime are normalized to the result of partition width and
height = 5.

Figure 3.13 gives the trade-off between HPWL and clock region assign-

ment runtime under different partition sizes. We perform experiments on a

representative benchmark, CLK-FPGA05, with partition width and height set

to 1, 5, 10, 15, 25, and 30, respectively. All the HPWL and runtime are nor-

malized to the result with height and width of 5. As can be seen, with larger

partition sizes, the runtime drops quickly and saturates at around 0.4 (normal-

ized runtime) while the wirelength increases steadily but slowly. Considering

the wirelength is not very sensitive to the partition size, we experimentally

choose partition width and height = 5 to achieve fast runtime and reasonably

good solution quality.
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3.3.3.3 Effectiveness Validation of Clock-Aware Packing

Figure 3.14 shows the normalized HPWL increases (less is better) of

placements with and without clock-aware packing compared with the lower-

bound placements that ignore all clock constraints. As can be seen, clock-

aware packing, for most benchmarks, delivers better wirelength over original

non-clock-aware packing. Another key observation is that, with both pro-

posed clock region assignment and clock-aware packing techniques applied,

UTPlaceF 2.0 can satisfy all clock constraints by only paying a little wire-

length overhead (< 1%).
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Figure 3.14: Normalized HPWL increases (%) of placements w/ and w/o
clock-aware packing compared with placements without any clock constraint
considerations.

3.3.4 Summary

With the increasing complicated FPGA clocking architecture, honoring

clock rules is becoming a fundamental issue in modern FPGA implementation
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flow. In this section, we have proposed a high-performance clock-aware FPGA

placement engine, UTPlaceF 2.0, which is capable of satisfying clock rules

for state-of-the-art FPGA devices while still maintaining good wirelength and

routability. An iterative minimum-cost-flow-based clock region assignment

framework, a probability-based clock distribution estimation method, and a

clock-aware packing technique are proposed for better honoring clock legality

throughout the whole placement and packing process. As the first-place winner

of ISPD 2017 clock-aware FPGA placement contest, UTPlaceF 2.0 can effi-

ciently achieve legal and high-quality placement solutions, which outperforms

all other contest placers in routed wirelength with competitive runtime.
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3.4 UTPlaceF 2.X: Simultaneous FPGA Placement and
Clock Tree Construction

In Section 3.3, we have proposed an efficient clock-aware placement

engine UTPlaceF 2.0. In UTPlaceF 2.0 and several recent works [14,64], clock

routing of clock networks is approximated by the bounding boxes of their

clock loads to simplify the clock legalization problem. Figure 3.15(a) gives an

example of this approximated modeling. It shows the distribution of all the

clock loads, including CLBs, DSPs, and RAMs, in a clock network. By using

the bounding box modeling method, this clock network consumes clock routing

resources in all the clock regions overlapped with its bounding box (shaded

regions). However, we observe that this modeling method often overestimates

the actual clock routing demands. This can be illustrated by Figure 3.15(b).

It shows the same clock load distribution as that in Figure 3.15(a), but here, a

clock tree (the bold black lines) is constructed to reveal the actual clock routing

demands. Compared with the bounding box estimation in Figure 3.15(a),

which consumes 9 clock regions, the same clock network only spans 6 clock

regions with tree construction in Figure 3.15(b).

Apart from the clock routing modeling inaccuracy, most previous works

resolve clock routing congestions in a greedy and iterative manner. Specifically,

they repeatedly push clock loads away from overflowed clock regions while

greedily minimizing the placement disturbance in each step. Such a method,

however, can only explore a very narrow solution space and always follows the

decisions made previously, which can lead to very suboptimal or even infeasible
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(a) (b)

Figure 3.15: Illustration of the clock routing demand calculation using (a) the
bounding box of clock loads and (b) the actual clock tree. Both figures show
the same clock network with the same load distribution. Shaded areas denote
the occupied clock regions. By using bounding box modeling in (a), the clock
network occupies 9 clock regions, while the actual clock tree only spans 6 clock
regions in (b).

solutions.

To remedy the aforementioned deficiencies in previous works, this sec-

tion presents a generic framework, UTPlaceF 2.X, that simultaneously opti-

mizes placement and ensures clock feasibility by explicit clock tree construc-

tion. Inspired by the branch-and-bound idea [36], we generalize the clock

legalization as a tree-space exploration process. By doing so, UTPlaceF 2.X

can explore a larger solution space and potentially produce better solutions

compared with conventional greedy approaches like UTPlaceF 2.0. Our major

contributions are highlighted as follows.

• Inspired by the branch-and-bound method, we interpret the solution

space of clock routing as a tree and then generalize the clock legalization

as a tree exploration process of finding legal solutions.
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• We propose a novel Lagrangian relaxation-based clock tree construction

technique to accurately model the clock routing demands during FPGA

placement.

• We tentatively study different ways of constructing and exploring the

solution-space tree and evaluate their impact on the overall quality of

results and efficiency.

• We integrate the proposed techniques in a placer called UTPlaceF 2.X.

Compared with other state-of-the-art methods on the ISPD 2017 clock-

aware placement contest benchmarks [80], the proposed UTPlaceF 2.X

achieves the best overall routed wirelength with competitive runtime.

The rest of this section is organized as follows. Section 3.4.1 gives the

problem definition. Section 3.4.2 overviews UTPlaceF 2.X flow and details the

proposed algorithms. Section 3.4.3 shows the experimental results, followed

by the summary in Section 3.4.4.

3.4.1 Preliminaries

3.4.1.1 Problem Definition

In placement problem, routed wirelength is treated as one of the most

important quality metrics since it is a good first-order approximation of overall

performance (frequency) and power. Therefore, in this work, our objective is to

minimize the routed wirelength. Given the clocking architecture (Section 3.2)
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and the optimization objective, we now define our simultaneous FPGA place-

ment and clock tree construction problem as follows.

Problem 4 (Simultaneous FPGA Placement and Clock Tree Con-

struction) Given an FPGA netlist, produce a placement with minimized

routed wirelength and a corresponding clock routing solution that satisfies the

target clocking architecture.

3.4.2 UTPlaceF 2.X Algorithms

3.4.2.1 Overview of the Proposed Flow

The overall flow of UTPlaceF 2.X is shown in Figure 3.16. UT-

PlaceF 2.X is built on top of our UTPlaceF-DL described in Section 2.4 and

it consists of three major phases: (1) wirelength-driven placement; (2) clock-

driven placement; (3) legalization and detailed placement.

In each iteration of the wirelength-driven placement phase, a quadratic

program is solved to minimize the wirelength and the rough legalization [33]

technique is conducted to eliminate cell overlaps. This loop is repeated until

the lower-bound wirelength and the upper-bound wirelength ratio [33] (LB/UB

WL Ratio) converges to 0.9. In the clock-driven placement phase, an extra

clock network planning step is performed right after the conventional quadratic

placement. It seeks to construct a legal clock routing solution with minimized

placement perturbation. After that, we assign cells to their feasible clock re-

gions induced from the resulting clock routing and conduct rough legalization

only within each clock region to preserve the clock legality. This clock region-
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Figure 3.16: The overall flow of UTPlaceF 2.X.

wise rough legalization updates the anchor forces [33] of cells to point to their

feasible locations found in the current placement iteration and pull them to

form a more clock-feasible solution in the next iteration. The clock-driven

placement phase stops when the wirelength fully converges. Finally, legaliza-

tion and detailed placement are performed to further optimize the placement

result while honoring the previously achieved clock routing.

As the centerpiece of UTPlaceF 2.X (Figure 3.16), the clock network

planning step will be elaborated later in this section. We first define the

clock network planning problem and give its mathematical formulation in Sec-

tion 3.4.2.2. Then, in Section 3.4.2.3, we give an intuitive explanation of a

general mathematical method, the branch-and-bound method, to solve a class

of problems like this. We will show that our proposed algorithms share a sim-

ilar underlying idea with the branch-and-bound method. The details of them
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are given in Section 3.4.2.4 – 3.4.2.8.

3.4.2.2 The Clock Network Planning Problem

A well-optimized placement (in terms of conventional metrics, like wire-

length, power, and timing) can often fail the clock routing. For such a case,

the goal of our clock network planning is to find a clock-feasible solution that

greatly preserves the given optimized placement. Therefore, our objective

here is to minimize the total cell movement. Meanwhile, the following two

constraints also need to be satisfied: (1) there should exist a legal clock rout-

ing solution; (2) there should not exist any logic resource overflows, that is, we

should be able to legalize all the cells with relatively small displacement. Given

the objective and constraints, we formally define the clock network planning

problem as follows.

Problem 5 (Clock Network Planning) Given an optimized FPGA place-

ment, find a movement-minimized cell-to-clock region assignment without logic

resource overflow and a corresponding clock routing solution satisfying the tar-

get clocking architecture.

Given the notations defined in Table 3.5, Problem 5 can be written as

a binary optimization problem shown in Formulation (3.14). It optimizes over

binary variables xv,r to minimize the objective (3.14a) of total cell movement.

If cell v is assigned to clock region r, then xv,r = 1, otherwise, xv,r = 0. Con-

straint (3.14c) guarantees that each cell is assigned to exactly one clock region.
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Table 3.5: Notations Used in Clock Network Planning

V The set of cells.
S The set of resource types, e.g., {LUT, FF, DSP, RAM}.
V(s) The set of cells of resource type s ∈ S.

A
(s)
v The cell v’s demand for resource type s ∈ S.
R The set of clock regions.

C
(s)
r The clock region r’s capacity for resource type s ∈ S.

Dv,r The physical distance between cell v and clock region r.
E The set of clock nets.

Constraint (3.14d) ensures that the total demand of each resource type is no

more than the corresponding capacity in each clock region. Constraint (3.14e)

requires the existence of legal clock routing solutions with respect to the as-

signment x. Here we do not list the closed-form expression of this constraint

since it can be extremely complicated and impossible to be tackled in practice.

min
x

∑

v∈V

∑

r∈R
Dv,r xv,r, (3.14a)

s.t. xv,r ∈ {0, 1},∀v ∈ V ,∀r ∈ R, (3.14b)

∑

r∈R
xv,r = 1,∀v ∈ V , (3.14c)

∑

v∈V
A(s)
v xv,r ≤ C(s)

r , ∀r ∈ R,∀s ∈ S, (3.14d)

Exist a legal clock routing w.r.t x. (3.14e)
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3.4.2.3 Branch-and-Bound Method

A general algorithm to solve binary optimization problems, like Formu-

lation (3.14), is the branch-and-bound method [36]. It is a tree traversal-based

heuristic to search the very large solution space of possible variable assign-

ments. Its basic idea can be illustrated by Figure 3.17. In this example, we

are trying to find the optimal solution of a constrained minimization problem

over a discrete (e.g., binary and integral) space. Each circle here denotes a

solution and the color intensity indicates its optimality (in terms of minimizing

the cost without considering feasibility). Three feasible solutions are denoted

by stroked circles.

A general branch-and-bound algorithm starts with solving the uncon-

strained problem P0 and its optimal solution typically is not feasible, as in this

example. In this case, by imposing different constraints, a branching procedure

divides the solution space into several sub-spaces (P1 and P2) and we continue

to find the unconstrained optimal solution in each of these sub-spaces. The

same branching procedure is progressively performed to each sub-problem until

a feasible solution is found (e.g., the solution of P3). Once a feasible solution is

reached, we can treat its cost as an upper-bound objective value of the target

minimization problem, and then, all the branches with lower-bound objective

values larger than it can be safely pruned in the later exploration. Using Fig-

ure 3.17 as an example, if we found the first feasible solution in P3 with the

objective value of Φ, then: (1) there is no need to further branch P3 since the

optimal solution of P3 is guaranteed to be no worse than any sub-problem of
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The 
Unconstrained 
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Figure 3.17: Illustration of the branch-and-bound method. Each circle denotes
a solution and color intensity indicates its optimality. Feasible solutions are
denoted by stroked circles.

P3; (2) there is no need to explore branches (sub-spaces) with lower-bound

objective values larger than Φ since solutions in them are guaranteed to be

sub-optimal.

The branch-and-bound method can explore a sufficiently large solution

space and find near-optimal solutions for various optimization problems within

a limited amount of time. Our proposed clock network planning algorithm

precisely borrows this idea. In the rest of this section, we will frequently link

our proposed techniques to the concepts introduced in this section for better

explanation.
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3.4.2.4 The Clock Network Planning Algorithm

Algorithm 12 gives our proposed clock network planning algorithm to

solve Formulation (3.14). Besides the inputs/outputs and notations described

in Problem 5 and Table 3.5, an extra input parameter N is required for con-

trolling the maximum number of feasible solutions to explore. We set N to 10

in our framework.

From line 1 to line 2, we initialize the best cell-to-clock region assign-

ment (x∗), its cost (cost∗), and the corresponding clock routing solution (γ∗)

as invalid and reset the number of feasible solutions n to 0. At line 3, we

construct an initial clock-assignment constraint κ(0). For a clock-assignment

constraint κ, each κe,r is a binary value that indicates whether cells in clock

net e can be assigned to clock region r. Similar to the branch-and-bound

method starting with an unconstrained problem (Section 3.4.2.3), we do not

consider clock feasibility at the beginning and allow any cell-to-clock region

assignment. Therefore, all the entries in the initial clock-assignment constraint

κ(0) are set to 1 (line 3). To perform a tree traversal-based exploration like the

branch-and-bound method, we maintain a stack to search the solution space

in the depth-first search (DFS) order. The DFS starts with the constraint κ(0)

(line 4) and repeated from line 5 to line 21 until the stack becomes empty

or enough number of feasible solutions are found (n = N). During the DFS,

various clock-assignment constraints κ are branched from the constraint tree

rooted at κ(0), just like the branching procedure illustrated in Figure 3.17.

The best solution found during this DFS exploration is returned at line 22 as
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Algorithm 12: Clock Network Planning

Input : A placement with notations defined in Table 3.5. The
maximum number of legal solutions N.

Output: A movement-minimized cell-to-clock region assignment
without logic resource overflow and a corresponding legal
clock routing solution.

1 (cost∗,x∗, γ∗)← (+∞, none, none);
2 n← 0;

3 κ
(0)
e,r ← 1,∀e ∈ E ,∀r ∈ R;

4 stack.push(κ(0));
5 while stack is not empty and n < N do
6 κ← stack.pop();

7 Get the optimal cell-to-clock region assignment x(κ) and its

cost cost(κ) under constraint κ (Section 3.4.2.5);

8 if no feasible x(κ) exists then continue;

9 Get the clock routing solution γ(κ) corresponding to x(κ)

(Section 3.4.2.6);

10 if γ(κ) is overflow-free then
11 n← n + 1;

12 if cost(κ) < cost∗ then
13 (cost∗,x∗, γ∗)← (cost(κ),x(κ), γ(κ));
14 end

15 end

16 else if γ(κ) has routing overflow then
17 Derive a set of more strict constraints K ′ from κ

(Section 3.4.2.7);
18 Remove κ′ ∈ K ′ that has lower-bound cost larger than

cost∗ (Section 3.4.2.8);
19 Push κ′ ∈ K ′ into stack by their lower-bound costs from

high to low;

20 end

21 end
22 return (cost∗,x∗, γ∗);
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the final result.

In each execution of line 5 to line 21, we first fetch the clock-assignment

constraint κ on the top of the stack (line 6), then get the movement-minimized

cell-to-clock region assignment constrained by logic resources and κ (line 7).

This step can be interpreted as, within the sub-space κ, finding the opti-

mal solution x(κ) of Formulation (3.14) without considering the clock con-

straint (3.14e). If no such x(κ) exists, this branch will be discarded (line 8).

Otherwise, we continue to evaluate the clock feasibility of x(κ) by construct-

ing a clock routing solution γ(κ) (line 9). If γ(κ) is routing overflow-free,

(cost(κ),x(κ), γ(κ)) then forms a feasible solution and we will update the best

solution (cost∗,x∗, γ∗) if needed (line 10 to line 15). If γ(κ) still has routing

overflows, we will branch new clock-assignment constraints from κ to encour-

age more clock-friendly solutions (line 17). These new constraints κ′ ∈ K ′ can

be interpreted as sub-spaces of κ and some previously allowed clock assign-

ments in κ can be blocked in κ′ ∈ K ′. Among these newly derived constraints,

we prune those that can only lead to sub-optimal solutions (line 18) and push

the remaining into the stack in the descending order of their lower-bound costs

(line 19). By doing so, we always first explore the branch with the minimum

lower-bound cost at each constraint tree node.

The details of each core building block in Algorithm 12 will be further

elaborated in the later sections. Section 3.4.2.5 describes the cell-to-clock

region assignment at line 7. Section 3.4.2.6 presents the clock routing at

line 9. The clock-assignment constraint derivation at line 17 and the lower-
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bound cost calculation from line 18 to line 19 are detailed in Section 3.4.2.7

and Section 3.4.2.8, respectively.

3.4.2.5 Minimum-Cost Flow-Based Cell-to-Clock Region Assign-
ment

The cell-to-clock region assignment (line 7 in Algorithm 12) essentially

is solving the clock-unconstrained version of Formulation (3.14) within the

sub-space of a given clock-assignment constraint κ. It can be written as a

binary optimization problem shown in Formulation (3.15), where E(v) denotes

the set of clocks in cell v, binary value κe,r indicates whether cells in clock net

e can be assigned to clock region r, and other notations are inherited from

Table 3.5. Note that Formulation (3.14) and Formulation (3.15) only differ by

the clock constraints (3.14e) and (3.15e).

min
x

∑

v∈V

∑

r∈R
Dv,r xv,r, (3.15a)

s.t. xv,r ∈ {0, 1},∀v ∈ V , ∀r ∈ R, (3.15b)
∑

r∈R
xv,r = 1, ∀v ∈ V , (3.15c)

∑

v∈V
A(s)
v xv,r ≤ C(s)

r ,∀r ∈ R,∀s ∈ S, (3.15d)

xv,r = 0,∀(v, r) ∈ {v ∈ V , r ∈ R | ∃e ∈ E(v) s.t. κe,r = 0}. (3.15e)

The motivation of formulating Formulation (3.15) in this way is that it can be

approximately transformed into a set of minimum-cost flow problems, each of

which corresponds to a resource type (e.g., LUT, FF, DSP, and RAM). Since

the minimum-cost flow is a well-studied problem, it can be efficiently solved by
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many mature algorithms [4]. Figure 3.18 gives a graph representation of the

minimum-cost flow corresponding to Formulation (3.15) with a single resource

type. It is a bipartite graph (regardless of the super source S and the super

target T ) with vertices for cells (v1, v2, . . . , v|V|) on the left and vertices for

clock regions (r1, r2, . . . , r|V|) on the right. We introduce an edge between each

pair of cell and clock region, but set its capacity to 0 if the assignment is

forbidden by the given constraint κ. With the edge cost and capacity settings

shown in Figure 3.18, computing the minimum-cost flow of amount Σv∈VA
(s)
v

on the graph can approximate the optimal solution of Formulation (3.15).

S

v1

v2

v|V|

T

r1

r2

r|R|

..
.

..
.

0,
A
(s
)

v
0, C (s)r

Dv,r

A
(s)
v

,

{
0, ∃e ∈ E(v) s.t. κe,r = 0

∞, otherwise

Figure 3.18: A graph representation of the minimum-cost flow for Formula-
tion (3.15) with a single resource type. The pair of numbers on each edge
denotes the unit flow cost and the flow capacity, respectively. For example,
the edge between S and v1 has a unit flow cost of 0 and a flow capacity of A

(s)
v1 .

The sub-optimality comes from the fact that, in a minimum-cost flow

solution, a cell can be split and assigned to multiple clock regions. In such a

case, we move all the “fragments” to the clock region containing the largest one
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among them to realize an actual cell-to-clock region assignment. In practice,

the splitting only occurs in a negligibly small portion of cells, thus the global

optimality can still be largely retained1. It is worthwhile to mention that, if

the logic resource demands of all cells for a given resource type s are the same

(i.e., A
(s)
i = A

(s)
j ,∀i, j ∈ V), the solution given by the minimum-cost flow is

also optimal for Formulation (3.15). This case is applicable to resource types

that only have one single cell type (e.g., DSP and CLB).

A minimum-cost flow solution, however, cannot always be realized as

a complete cell-to-clock region assignment even without cell splitting. If the

resulting flow amount is less than the amount of flow being pushed (Σv∈VA
(s)
v ),

then not all the cells can be assigned without logic resource overflow. This can

happen in scenarios where clock nets are over-constrained in too-small regions.

In such a case, it is guaranteed that no feasible solutions exist in the sub-space

defined by the given clock-assignment constraint κ, and thus we can safely

prune this branch as described at line 8 of Algorithm 12.

3.4.2.6 Clock Tree Construction

In this section, we will present the algorithm to construct a clock tree

solution for a given cell-to-clock region assignment. As introduced in Sec-

tion 3.2, a clock tree consists of a D-layer vertical trunk tree that connects all

clock loads and an R-layer route that connects the D-layer trunk tree to the

1This post step might produce some negligible logic resource overflows. If the logic
resource constraint needs to be rigorously honored, slightly tighter logic resource capacities
can be applied to leave some margin for it.
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clock source. Since the routing patterns on these two layers are very different,

the routings on these two layers are conducted separately in our framework.

Since R-layer routing relies on the D-layer trunk location, we perform D-layer

routing first, then followed by R-layer routing.

3.4.2.6.1 Lagrangian Relaxation-Based D-Layer Clock Tree Con-
struction

(a) (b) (c)

Figure 3.19: Three different D-layer clock tree topologies of the same clock
load distribution on a 3 × 4 clock region grid. Each of them is a vertical trunk
tree with horizontal branches connecting all the clock loads. Yellow shaded
regions denote clock regions containing clock loads of the given clock net.

As shown in Figure 3.19, given a cell-to-clock region assignment on a

clock region grid with m columns (m = 3 in Figure 3.19), we can generate

m D-layer clock tree topologies for each clock by placing the vertical trunk in

different columns. Our goal here is to select exactly one clock tree topology

from the m candidates for each clock such that there is no VD/HD overflow.

Meanwhile, a topology-dependent objective (e.g., resource usage, clock skew,

insertion delay, etc.) also needs to be optimized.
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If we denote the set of m clock tree candidates of clock e by T (e), de-

note the set of all clock tree candidates by T (i.e., T =
⋃
e∈E T (e)), denote the

topology cost of clock tree candidate t by φt, and use binary values Ht,r/Vt,r

to represent whether clock tree candidate t occupies an HD/VD track in clock

region r, then the D-layer clock tree construction problem can be mathemat-

ically written as a binary optimization problem shown in Formulation (3.16).

min
x

∑

t∈T
φt zt, (3.16a)

s.t. zt ∈ {0, 1}, ∀t ∈ T , (3.16b)

∑

t∈T (e)

zt = 1,∀e ∈ E , (3.16c)

∑

t∈T
Ht,r zt ≤ 24,∀r ∈ R, (3.16d)

∑

t∈T
Vt,r zt ≤ 24,∀r ∈ R. (3.16e)

Formulation (3.16) optimizes over binary variables zt to minimize the objec-

tive of topology cost (3.16a). If the clock tree candidate t is selected in the

routing solution, then zt = 1, otherwise, zt = 0. Constraint (3.16c) ensures

that exactly one candidate is selected for each clock net. Constraints (3.16d)

and (3.16e) bound the HD/VD clock routing usage in each clock region (24

is the number of available HD/VD tracks in each clock region of our target

device as described in Section 3.2). In this work, since feasibility is the only

consideration for clock networks, we simply set the topology cost φt as the

total HD and VD demand of t. However, other metrics (e.g., clock skew) can
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also be integrated in practice.

Although Formulation (3.16) can be optimally solved using integer lin-

ear programming techniques, they are too computationally expensive and un-

affordable in our application. Therefore, we relax Formulation (3.16) to a

much easier problem, as shown in Formulation (3.17). Here, we remove the

two clock resource constraints (3.16d) and (3.16e) and add a set of Lagrangian

multipliers [22] λt in the objective (3.17a). Each λt can be interpreted as the

routing-overflow penalty applied to the clock tree candidate t and we assign a

larger value to it if t is likely to run through congested regions. Then, by prop-

erly updating these λt and iteratively solving Formulation (3.17), overflow-free

or overflow-minimized clock routing solutions can be achieved.

min
x

∑

t∈T
(φt + λt) zt, (3.17a)

s.t. zt ∈ {0, 1},∀t ∈ T , (3.17b)

∑

t∈T (e)

zt = 1,∀e ∈ E . (3.17c)

Algorithm 13 summarizes our Lagrangian relaxation-based D-layer

clock tree construction. From line 1 to line 2, we create all the clock tree

candidates T and initialize their penalties λ(0) to 0. In each Lagrangian itera-

tion (line 4 to line 8), we first get the optimal solution z(i) of Formulation (3.17)

with λ(i) (line 5). Then, λ(i+1) can be derived from λ(i) by penalizing clock tree

candidates that run through overflowed clock regions in the routing solution
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Algorithm 13: Lagrangian Relaxation-Based D-layer Clock
Tree Construction

Input : A cell-to-clock region assignment x. The maximum number
of Lagrangian iterations Imax (default is 20).

Output : A D-layer routing solution with minimized routing overflow
and topology cost.

1 Create all clock tree candidates T for x (Figure 3.19);

2 λ
(0)
t ← 0,∀t ∈ T ;

3 i← 0;
4 do
5 z(i) ← solveLR(λ(i)) // solve Formulation (3.17)

6 λ(i+1) ← updateLR(z(i),λ(i)) // update λ
7 i← i + 1;

8 while z(i) has overflow and λ(i) 6= λ(i−1) and i < Imax;

9 z∗ ← the z(i) with the minimum overflow;
10 return {t ∈ T | z∗t = 1};
11 Function solveLR(λ):
12 zt ← 0, ∀t ∈ T ;
13 foreach e ∈ E do
14 t∗ ← the t ∈ T (e) with the minimum φt + λt;
15 zt∗ ← 1;
16 return z;

17 Function updateLR(z(i),λ(i)):
18 ∆λt ← 0, ∀t ∈ T ;
19 foreach r ∈ R with HD/VD overflows of OH/OV do
20 TH(r)← {t ∈ T | Ht,r = 1};
21 TV (r)← {t ∈ T | Vt,r = 1};
22 foreach t ∈ TH(r) do ∆λt ← ∆λt + OH

|TH(r)| ;

23 foreach t ∈ TV (r) do ∆λt ← ∆λt + OV
|TV (r)| ;

24 α←∞;
25 foreach e ∈ E do
26 t∗ ← the t ∈ T (e) being selected in iteration i;
27 foreach t ∈ T (e) that has ∆λt < ∆λt∗ do

28 α← min(α, (φt+λt)−(φt∗+λt∗ )
∆λt∗−∆λt

);

29 if α =∞ then return λ(i);

30 λ
(i+1)
t ← λ

(i)
t + (1 + δ) α∆λt, ∀t ∈ T ;

31 return λ(i+1);
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given by z(i) (line 6). This iteration is repeated until one of the following holds:

(1) a routing overflow-free solution is found; (2) λ does not change anymore;

(3) the maximum iteration count Imax is reached; Finally, from line 9 to line 10,

we backtrace all the explored solutions and return the one with the minimum

routing overflows as the final result.

The optimal solution of Formulation (3.17), as given in the function

solveLR (line 11 to line 16), can be efficiently obtained by picking the can-

didate with the minimum φt + λt from each candidate pool T (e). The func-

tion updateLR (line 17 to line 31) presents our λ updating scheme. From

line 18 to line 23, we first calculate the base penalty ∆λt for each candidate

t. As shown at line 22 and line 23, for an overflowed clock region, we treat its

overflow value (OH/OV ) as the total amount of penalty and evenly distribute

the penalty to all the candidates running through it. After that, from line 24

to line 28, we calculate the minimum scaling factor α that can change the

optimal solution of Formulation (3.17) with α ∆λ being added to current λ.

If such an α does not exist, λ are kept unchanged (line 29). Otherwise, we

add the extra penalty (1 + δ)α∆λ to λ(i) (δ � 1 for tie-breaking) and return

the result as λ(i+1) (line 30 to line 31).

3.4.2.6.2 A∗ Search-Based R-Layer Clock Tree Routing

The R-layer routing is responsible for connecting the clock source to the D-

layer trunk tree. Given a D-layer clock routing solution, the R-layer routing

is very similar to the conventional 2-pin net global routing problem. The
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only difference is that, in each of these 2-pin nets, one of the two “pins” is a

vertical trunk (Section 3.2) instead of a single terminal. Therefore, we extend

the conventional A∗ search [26]-based routing algorithm to treat all the clock

regions occupied by the D-layer trunk as legal endpoints. Besides, a rip-up and

reroute technique similar to [53] is also applied to iteratively resolve routing

overflows.

3.4.2.7 Clock-Assignment Constraint Derivation

Recall that, at line 17 of Algorithm 12, for a given clock-assignment con-

straint κ, if an overflow-free clock routing solution cannot be found, we will

derive a set of new constraints from κ to encourage more clock-friendly solu-

tions. In this section, we will detail this clock-assignment constraint derivation

process. Since, in practice, R-layer routing is much less congested than D-layer

routing and rarely fails, we will only discuss constraint derivation methods for

resolving D-layer congestions. However, similar ideas are also applicable to

R-layer routing.

3.4.2.7.1 Constraint Derivation for VD Overflows

Algorithm 14 summarizes our constraint deviation scheme for resolving VD

overflows. We first get the clock region r with the most VD overflow (line 1).

Then, for each clock that occupies VD resources in r, we generate placement

blockages in four directions, as shown in Fig 3.20, that can potentially alleviate

the congestion in r. Finally, we impose each of these blockages on top of the
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(a) (b) (c) (d)

Figure 3.20: Four half plane-based clock-assignment blockages (hatched/solid
red regions) that are in the (a) south, (b) north, (c) west, and (d) east of a
VD overflowed clock region (solid red region).

current clock-assignment constraint κ to form a set of new constraints K ′

(line 3 to line 9). If there are q clock nets occupying VD resources in r, there

will be 4q new constraints in K ′ and each κ′ ∈ K ′ represent a sub-space of κ

as described in Section 3.4.2.4.

3.4.2.7.2 Constraint Derivation for HD Overflows

Our constraint derivation for HD overflow is similar to that for VD, as de-

scribed in Section 3.4.2.7.1 and Algorithm 14. However, given the fact that

HD branches affect the tree topology much more locally than VD trunks,

blockages of granularities finer than Figure 3.20 might be able to achieve even

better results. For example, the corner-based (Figure 3.21) and the row-based

(Figure 3.22) blockages can potentially resolve the overflow with less cell move-

ment compared with the blockages shown in Figure 3.20. Surprisingly, as will

be shown in Section 3.4.3.3, the blockage schemes in Figure 3.21 and Fig-

ure 3.22 cannot outperform that in Figure 3.20 within a limited amount of
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Algorithm 14: Clock-Assignment Constraint Deriva-
tion for VD Overflows

Input : A clock-assignment constraint κ and its clock routing
solution γ.

Output: A set of new clock-assignment constraints K ′ derived
from κ that can potentially alleviate the VD overflow.

1 r ← the clock region with the most VD overflow in γ;
2 K ′ ← ∅;
3 foreach e ∈ E that occupies VD resources in r do
4 foreach blockage B in Figure 3.20 do
5 κ′ ← κ;
6 κ′e,b ← 0,∀b ∈ B;

7 K ′ ← K ′ ∪ κ′;
8 end

9 end
10 return K ′;

time in our experiments. This might be because the blockages in Figure 3.21

and Figure 3.22 tend to cut the placeable region of each clock into non-convex

and unconnected fragments, which significantly slow down the convergence of

Algorithm 12. While using the blockages in Figure 3.20, the placeable region

of each clock is guaranteed to be a rectangle.

It is still an open problem to find the best constraint derivation scheme,

but we can see that our framework is generic and any other constraint deriva-

tion methods can also be easily integrated.

3.4.2.8 Lower-Bound Cost Calculation

In this section, we introduce a method to calculate the lower-bound

cost of Formulation (3.15) for a given clock-assignment constraint. This lower-
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(a) (b) (c) (d)

Figure 3.21: Corner-based clock-assignment blockages for an HD overflowed
clock region.

(a) (b) (c)

Figure 3.22: Row-based clock-assignment blockages for an HD overflowed clock
region.

bound cost is essential for: (1) the solution pruning at line 18 of Algorithm 12;

(2) the constraint sorting at line 19 of Algorithm 12. A good lower-bound

cost should be: (1) as tight as possible to reflect the actual cost; (2) cheap

to calculate, as it will be evaluated much more frequently than the actual

cost calculation (solving Formulation (3.15)). Given these requirements, we

propose the following lower-bound cost for a given clock-assignment constraint

κ:

costLB(κ) =
∑

v∈V
min

{r∈R|κe,r=1,∀e∈E(v)}
Dv,r, (3.18)
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where E(v) denotes the set of clock nets incident to cell v. Equation (3.18)

can be proved as a lower-bound cost of Formulation (3.15) since it is the

optimal solution of Formulation (3.15) without considering the logic resource

constraint (3.15d). Moreover, its time complexity is only linear to the number

of cells in the design, which is very computationally efficient.

3.4.3 Experimental Results

We implement UTPlaceF 2.X in C++ based on our UTPlaceF-DL

framework described in Section 2.4 and perform the experiments on a Linux

machine running with Intel Core i9-7900X CPUs (3.30 GHz and 10 cores) and

128 GB RAM. The ISPD 2017 clock-aware FPGA placement contest bench-

mark suite [80] released by Xilinx is used to demonstrate the effectiveness of the

proposed approach. Routed wirelength reported by Xilinx Vivado v2016.4 [72]

is used to evaluate the placement quality.

Table 3.6 lists the characteristics of the ISPD 2017 benchmark suite.

To further demonstrate the effectiveness of UTPlaceF 2.X, we also perform

experiments under more strict clock constraints. Specifically, besides using all

of the 24 clock routing tracks, we also conduct experiments that only utilize

up to 12, 8, 7, 6, and 5 clock routing tracks in each clock region. In the rest of

this section, they will be denoted as “Clock Capacity (CC) = 24/12/8/7/6/5”.

The wirelength optimization kernels (global/detailed placement and le-

galization) of our placer are carefully parallelized. Therefore, we enabled 10

threads for them in our experiments, but the techniques proposed in UT-
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Table 3.6: ISPD 2017 Contest Benchmarks Statistics

Designs #LUT #FF #RAM #DSP #Clock

CLK-FPGA01 211K 324K 164 75 32
CLK-FPGA02 230K 280K 236 112 35
CLK-FPGA03 410K 481K 850 395 57
CLK-FPGA04 309K 372K 467 224 44
CLK-FPGA05 393K 469K 798 150 56
CLK-FPGA06 425K 511K 872 420 58
CLK-FPGA07 254K 309K 313 149 38
CLK-FPGA08 212K 257K 161 75 32
CLK-FPGA09 231K 358K 236 112 35
CLK-FPGA10 327K 506K 542 255 47
CLK-FPGA11 300K 468K 454 224 44
CLK-FPGA12 277K 430K 389 187 41
CLK-FPGA13 339K 405K 570 262 47

Resources 538K 1075K 1728 768 -

PlaceF 2.X are all executed with only a single thread.

3.4.3.1 Comparison with Other State-of-the-Art Placers

Table 3.7 compares our results with other state-of-the-art academic

clock-aware placers, including UTPlaceF 2.0 [42], NTUfplace [34], RippleF-

PGA [64], and the clock-aware version of UTPlaceF-DL [44]. Among them,

UTPlaceF 2.0, NTUfplace, and RippleFPGA are extensions of the top-3 win-

ners of the ISPD 2017 clock-aware placement contest [80]. Metrics “WL” and

“RT” represent the routed wirelength and runtime, while “WLR” and “RTR”

represent the wirelength and runtime ratios normalized to UTPlaceF 2.X.

All the results of other placers are from their original publications.

Since we are not able to get all their results under different CC values, this

comparison is only based on the default clock capacity CC = 24. In this
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comparison, UTPlaceF 2.0, NTUfplace, and RippleFPGA are single-threaded,

while UTPlaceF-DL and our placer are executed with 16 and 10 threads,

respectively. The runtime result of NTUfplace in Table 3.7 is the total runtime

of placement and routing since the original publication did not report the

placement runtime alone.

Due to the differences in machines, experiment setups, and baseline

placement algorithms, Table 3.7 is not an apple-to-apple comparison from the

clock legalization perspective. However, we still can see that UTPlaceF 2.X

achieves the best overall routed wirelength with very competitive efficiency.

3.4.3.2 Comparison with a State-of-the-Art Method

To further demonstrate the effectiveness of UTPlaceF 2.X in a fair

way, we implement the clock-related parts in our UTPlaceF 2.0 described

in Section 3.3 (it is also the 1st-place winner of the ISPD 2017 clock-aware

placement contest) and replaced the counterparts in UTPlaceF 2.X with them.

This new placer is denoted as UTPlaceF 2.0-Impl. Since UTPlaceF 2.0-Impl

and UTPlaceF 2.X only differ by the clock legalization approaches, the noises

from parts that are irrelevant to this work (e.g., global/detailed placement)

can be completely decoupled.
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Table 3.8 compares UTPlaceF 2.X with UTPlaceF 2.0-Impl. It can be

seen that UTPlaceF 2.X achieves similar results compared with UTPlaceF 2.0-

Impl under relatively loose clock constraints (CC = 24/12). As the clock

capacity reduces, UTPlaceF 2.X starts to outperform UTPlaceF 2.0-Impl

in both routed wirelength and runtime. On average, with CC = 8/7/6/5,

UTPlaceF 2.0-Impl suffers 1.1%/2.3%/13.1%/30.4% wirelength degradation,

while runs 1.21×/1.40×/1.67×/2.19× slower compared with the baseline (UT-

PlaceF 2.X with CC = 24). However, with UTPlaceF 2.X, the routed wire-

length only degrades by 0.6%/1.2%/2.3%/17.6% with only 7%/10%/17%/24%

runtime increase. Furthermore, in the extremely challenging case of CC = 5,

UTPlaceF 2.X can find feasible solutions for 9 out of 13 designs within the

runtime limit of 1800 seconds, while only 6 designs can be successfully placed

using UTPlaceF 2.0-Impl. Therefore, UTPlaceF 2.X is especially effective for

cases with high clock utilization.
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3.4.3.3 Comparison of Different Clock-Assignment Blockage
Schemes

Table 3.9 compares the three clock-assignment blockage schemes de-

scribed in Section 3.4.2.7: (1) half plane-based blockages (Figure 3.20); (2)

corner-based blockages (Figure 3.21); (3) row-based blockages (Figure 3.22).

Surprisingly, more fine-grained blockage schemes lead to worse quality and

runtime in our experiments. In the very challenging case of CC = 6, the half

plane-based scheme outperforms the corner-based and the row-based schemes

by 9.0% and 24.4%, respectively, in routed wirelength. Meanwhile, it also runs

1.08× and 1.33× faster than them. Moreover, the corner-based and the row-

based schemes failed to find feasible solutions for 1 and 4 designs, respectively,

within the runtime limit of 1800 seconds, while the half plane-based scheme

can achieve feasible solutions for all 13 designs.

We observe that the two fine-grained schemes often split the feasible

region of each clock into separated and non-convex fragments, which can sig-

nificantly worsen the convergence of the algorithm and result in poor solution

quality or even infeasible solutions within a limited amount of time. It is

still an open problem to find blockage schemes better than the half-plane one

(Figure 3.20), but preserving the continuity and convexity of feasible regions

should play a very important role here.
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3.4.3.4 Branch-and-Bound Tree Exploration

Figure 3.23 visualizes the lower-bound costs (Equation (3.18)) and the

actual costs (Formulation (3.15)) of the first 30 feasible solutions found in

a branch-and-bound tree exploration of CLK-FPGA01 with CC = 6. We can

observe that our lower-bound cost estimation is highly correlated with the

actual cost. Therefore, even if we greedily pick the branch with the minimum

lower-bound cost at each step, a relatively good solution can still be obtained,

which is the first feasible solution shown in Figure 3.23. However, due to

the non-convexity of the clock network planning problem, the first solution is

generally not the optimum. In this example, there are 7 solutions (in the first

30 feasible solutions) having less actual costs than the first one (the solution

obtained by the greedy approach). The best among them is achieved at number

27, which is about 4% better than the first solution.

3.4.4 Summary

In this section, we have proposed a generic FPGA placement frame-

work, UTPlaceF 2.X, that simultaneously optimizes placement quality and

ensures clock feasibility by explicit clock tree construction. The proposed

UTPlaceF 2.X significantly reduces the placement quality degradation while

honoring the clock feasibility for designs with high clock utilization. To real-

ize UTPlaceF 2.X, a branch-and-bound-inspired clock network planning algo-

rithm and a Lagrangian relaxation-based clock tree construction technique are

proposed. Our experiments on the ISPD 2017 benchmark suite demonstrate
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Figure 3.23: The lower-bound and actual costs of the first 30 feasible solutions
found in a branch-and-bound procedure of CLK-FPGA01 with CC = 6.

that UTPlaceF 2.X outperforms other state-of-the-art approaches in routed

wirelength with competitive runtime.

197



Chapter 4

Parallel FPGA Placement Algorithms

4.1 Introduction

Placement is one of the most time-consuming optimization steps in

modern FPGA physical implementation flow. In the past several decades,

most of the research attention was focused on improving placement solution

quality. However, ultra-fast and efficient placement core engines are now in

great demand. Firstly, with the increasing capacity and complexity of mod-

ern FPGA devices, the gate count of state-of-the-art commercial FPGAs has

reached the scale of millions [18,29]. Moreover, as a type of hardware accelera-

tors, FPGAs need to be frequently reconfigured to adapt rapid and continuous

changes from users in many scenarios, like datacenter-based cloud computing.

Therefore, it is particularly desirable to develop a high-performance place-

ment engine to reduce the FPGA implementation time. Besides, placement

also has significant impacts on the quality of design mapping, hence, good

This chapter is based on the following publication.

1. Wuxi Li, Meng Li, Jiajun Wang, and David Z. Pan. “UTPlaceF 3.0: A parallelization
framework for modern FPGA global placement.” In Proceedings of the 36th Inter-
national Conference on Computer-Aided Design, pp. 922-928. IEEE Press, 2017.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.
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performance-boosting techniques should still maintain competitive placement

solution quality.

The scalability issue has constantly pushed the evolution of placement

algorithms in the past few decades. In the early age of placement, simulated

annealing-based placers, such as [7, 10, 11], dominated industry and academic

research. Although the annealing technique worked well for small designs, as

the capacity of FPGAs kept growing, it was no longer scalable for larger FPGA

devices. Industry and academia then turned to minimum-cut-partitioning-

based placers, e.g. [56], which performed well for designs with tens of thou-

sands of gates. When the gate count of FPGAs arrived at the scale of millions,

analytical placers, e.g., [14, 24,25,39,50,62,63,77,78], started to steadily out-

perform annealing and minimum-cut approaches in both runtime and quality.

Despite the effectiveness and efficiency of analytical placers, their run-

time still increases rapidly as the complexity and scale of FPGA devices has

not stopped growing. One promising solution is leveraging today’s power-

ful multi-core CPUs to achieve efficient placement parallelism. For quadratic

placers, wirelength is approximated as a quadratic objective, which can be

minimized by solving symmetric and positive-definite (SPD) linear systems.

The solution can be quickly approached by various Krylov-subspace methods,

among which the preconditioned conjugate gradient (PCG) method is the most

efficient known algorithm for placement problem. As solving SPD linear sys-

tems dominates the total runtime of placement, some previous effort has been

made on parallelizing PCG from various angles. For example, SimPL [33], a
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quadratic placer for application-specific integrated circuits (ASICs), achieved

1.89× speedup for PCG by solving x- and y-directed wirelength simultaneously

with 2 threads. Further speedup is possible by parallelizing matrix-vector op-

erations in PCG. However, the work in [49] showed that this technique cannot

even achieve 2× speedup by using 16 threads in their experiments.

Table 4.1: Comparison of Recent FPGA and ASIC Placement Contest Bench-
marks

Benchmark Suite
Avg. #Pin Avg. #Pin

Per Movable Cell Per Net

FPGA
ISPD 2016 4.99 4.95
ISPD 2017 4.16 4.15

ASIC
ICCAD 2014 3.07 3.06
ICCAD 2015 3.13 2.99

A more recent work, POLAR 3.0 [49], presented a quadratic place-

ment parallelization framework for ASICs based on geometric partitioning. In

particular, they divide cells into partitions based on their physical locations,

then perform PCG and rough legalization [33] for each partition separately

in parallel. In order to reduce solution quality loss, a full-netlist placement

is performed periodically to allow inter-partition cell moving. Although their

approach achieved promising results (4× speedup with 1.2% wirelength degra-

dation by using 16 threads) on ASIC benchmarks, similar performance gain

might not be reproducible to FPGA designs for the following two reasons:

(1) placeable cells and nets in FPGA designs typically have more pins com-

pared with ASIC designs (as shown in Table 4.1), which can lead to stronger

inter-partition connections and larger quality degradation; (2) various FPGA
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architecture constraints (e.g., clock legalization rules [17]) impose difficulties

to the parallelization of rough legalization.

In this section, we propose a highly-parallelized quadratic placement

framework for FPGAs, UTPlaceF 3.0, which takes full advantages of mod-

ern multi-core CPUs and delivers an appealing performance boost. Besides,

the placement quality loss is also taken care of with only very little runtime

overhead. The major contributions of this work are highlighted as follows.

• We propose a placement-driven block-Jacobi preconditioning technique

that transforms a placement problem into a set of independent sub-

problems, which can be solved in parallel.

• We propose a parallelized incremental placement correction technique to

reduce placement quality degradation.

• The ISPD 2016 benchmark suite demonstrates the effectiveness of our

framework. On average, UTPlaceF 3.0 achieves 5× speedup by using 16

threads with only 3.0% wirelength degradation.

The rest of this section is organized as follows. Section 4.1.1 reviews the

preliminaries of quadratic placement. Section 4.1.2 systematically studies the

performance bottlenecks of state-of-the-art quadratic placers. Section 4.1.3

gives the details of UTPlaceF 3.0 algorithms. Section 4.1.4 shows the experi-

mental results, followed by the summary in Section 4.1.5.
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4.1.1 Preliminaries

4.1.1.1 Quadratic Placement

An FPGA netlist can be represented as a hypergraph H = (V , E),

where V = {v1, v2, ..., v|V|} is the set of cells and E = {e1, e2, ..., e|E|} is the

set of nets. Let x = {x1, x2, ..., x|V|} and y = {y1, y2, ..., y|V|} be the x and

y coordinates of all cells. The wirelength-driven global placement problem is

to determine cell position vectors x and y such that the total wirelength is

minimized. Wirelength is measured by the half-perimeter wirelength (HPWL)

defined as follows:

HPWL(x,y) =
∑

e∈E

(
max
i,j∈e
|xi − xj|+ max

i,j∈e
|yi − yj|

)
. (4.1)

As HPWL is not differentiable everywhere, quadratic placers approxi-

mate it by squared Euclidean distance between cells using various net models,

such as hybrid net model [76] and bound-to-bound (B2B) net model [70].

Therefore, the wirelength cost function in quadratic placers is defined as

W (x,y) =
1

2
xTQxx+ cTxx+

1

2
yTQyy + cTy y + const. (4.2)

Since both Hessian matrices Qx and Qy in Equation (4.2) are SPD,

minimizing W (x,y) is equivalent to solving the following two linear systems.

Qxx = −cx, (4.3a)

Qyy = −cy. (4.3b)
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To eliminate cell overlaps, most state-of-the-art quadratic placers [39, 62, 63]

adopted a cell-spreading technique, called rough legalization [33], which adds

extra spreading force pointing to cells’ anchor locations (i.e., locations that

satisfy cell density constraint). After each rough legalization execution, linear

systems (4.3a) and (4.3b) are updated accordingly and solved again. The loop

of solving linear systems and performing rough legalization is repeated until

cells are fully spread out.

4.1.2 Empirical Runtime Study

In this section, we will empirically analyze the runtime bottlenecks of a

state-of-the-art quadratic placer and evidence that achieving a highly scalable

parallel placement is indeed a challenging problem.

Circuit Info.

Construct Linear Systems

Solve Linear Systems

Rough Legalization

Update Anchor Force

Converge?

Done

Yes

No

Figure 4.1: A representative rough legalization-based quadratic placement
flow.

A representative rough legalization-based quadratic placement flow is
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presented in Figure 4.1. To show its runtime bottlenecks, we implement a

pure wirelength-driven UTPlaceF1 and perform experiments on the ISPD 2016

benchmark suite with a single thread. As illustrated in Figure 4.2, the three

major runtime contributors, on average, are solving linear systems (85.2%),

rough legalization (7.5%), and linear system construction (7.3%), respectively.

7.3%

Linear System Construction

7.5%

Rough Legalization

85.2%

Linear System Solving

Figure 4.2: Normalized runtime of the three major runtime contributors in
our pure wirelength-driven UTPlaceF on the ISPD 2016 benchmark suite.

Due to the decomposability of x- and y-directed wirelength in quadratic

placement, the linear systems (4.3a) and (4.3b) can be constructed and solved

perfectly in parallel using two threads. However, further parallelization be-

comes harder and inefficient.

The most efficient linear system construction approach is to scan and

fill Hessian matrices Qx and Qy in a net-by-net manner. Considering multiple

nets might contribute to the same entry in Qx and Qy (e.g., multiple nets

1We removed the routability optimization and global-move refinement in the original
UTPlaceF described in Section 2.3.
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share the same cell), there are two potential parallelization strategies: (1)

processing nets in parallel and adding mutex lock2 to each non-zero entry; (2)

partitioning nets into groups and constructing partial Hessian matrices for each

group in parallel, then, joining all partial Hessian matrices together. As can

be seen, both strategies introduce considerable runtime overhead, therefore,

linear system construction is difficult to be parallelized.

Solving linear systems, as the most time-consuming step, is inherently

hard to parallelize due to the iterative nature of PCG. Experiments in [49]

showed that only 1.8× speedup can be achieved by using the cutting-edge

PCG solver in Intel MKL library [45] on an 8-core machine.

Unless special care is taken, rough legalization can only handle one

cell density hotspot at a time since spreading windows of multiple hotspots

might intersect to each other. For each hotspot, the frequent cell sorting

for horizontal and vertical cell spreading dominates the runtime. Although

parallelization can be applied here, experiments in [33] only achieved 1.62×

speedup by using 8 threads.

To manifest the placement parallelization crisis, we further paral-

lelize our pure wirelength-driven UTPlaceF in the following way utilizing

OpenMP [2]: (1) constructing and solving linear systems for x and y in par-

allel; (2) enabling parallelization for matrix-vector operations in PCG if more

than two threads are available; (3) substituting the sequential sorting in rough

2Mutex (mutually exclusive) lock is a mechanism that guarantees a resource can only be
accessed by one thread at a time in a multi-threading environment.
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Figure 4.3: Runtime scaling of the three major runtime contributors in our
pure wirelength-driven UTPlaceF by multi-threading. FPGA-1 and FPGA-12
contain 0.1M and 1.1M cells, respectively.

legalization with its equivalent parallel version in GNU libstdc++ parallel

mode [46]. We then perform experiments using a 2.60 GHz Intel Xeon E5-2690

v3 CPU with 24 cores on two representative (the smallest and the largest) de-

signs in the ISPD 2016 benchmark suite. We collect the runtime results under

1, 2, 4, 8, and 16 threads. Figure 4.3 presents the runtime scaling of the three

major runtime contributors. As shown, most PCG speedup is from simulta-

neously solving x and y (1 thread vs 2 threads) and it plateaus out quickly on

matrix-vector level parallelization (from 2 threads to 16 threads). Both linear

system construction and rough legalization scale poorly. The overall speedup
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saturates at around 3×.

In summary, decomposing x and y and low-level parallelization (i.e.,

parallel sorting and matrix-vector operations) alone can only achieve about

3× speedup. In this work, we will explore innovative high-level approaches to

break this parallelism wall.

4.1.3 UTPlaceF 3.0 Algorithms

4.1.3.1 Overall Flow

Initial Placement

Parallelized PlacementNetlist

Construct & Solve
Linear Systems

Rough Legalization &
Update Anchor Force

Partition Netlist

Construct & Solve Linear
Systems for Sub-Netlists

Synchronization

Parallelized Incremental
Placement Correction

Synchronization

Rough Legalization &
Update Anchor Force

Converge?

Done

Yes

No

Figure 4.4: The overall flow of UTPlaceF 3.0.

The overall flow of UTPlaceF 3.0 is illustrated in Figure 4.4. The whole

flow starts with the initial placement consisting of one pass of linear system

construction and solving followed by the rough legalization and anchor force

updating. After that, the netlist is divided into several sub-netlists utilizing
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hypergraph minimum-cut partitioning techniques. It should be noted that

the resulting sub-netlists are not necessarily physically separated. In practice,

cells from different sub-netlists are likely mixed together. Once the partition-

ing is done, the linear systems of each sub-netlist are constructed and solved

independently in parallel. However, because of the interdependency among

sub-netlists (i.e., inter-partition nets), sub-netlist placement might not con-

verge to the optimal solution, which leads to placement quality loss. There-

fore, an incremental placement correction step, which takes the inter-partition

dependency into consideration, is performed to reduce the quality degrada-

tion after all sub-netlist placements are done. Finally, rough legalization and

anchor force updating are executed. The loop of the parallelized placement,

rough legalization, and anchor force updating is repeated until the wirelength

converges.

4.1.3.2 Placement-Driven Block-Jacobi Preconditioning

As demonstrated by the empirical study in Section 4.1.2, PCG domi-

nates the total runtime of global placement. Thus, parallelizing PCG is of top

priority. A common and effective PCG parallelization scheme is to leverage

the block-Jacobi method. The block-Jacobi method essentially exploits the

divide-and-conquer approach to transform a large linear system into a set of

independent smaller sub-systems and solve each of them individually.

Figure 4.5 shows an example of applying an 8-way block-Jacobi method

on a sparse SPD matrix Q. The first step (from Figure 4.5(a) to Figure 4.5(b))
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(a) (b) (c)

Figure 4.5: An example of building a block-Jacobi preconditioner from a sparse
SPD matrix Q based on an 8-way partitioning. (a) The matrix Q. (b) After
an 8-way partitioning by row/column permutation. (c) The resulting block-
Jacobi preconditioner of Q.

is to find a good row/column permutation such that the sum of off-block-

diagonal non-zero entries is minimized. As an SPD matrix can be represented

as an undirected weighted graph (UWG), finding the best permutation for k

diagonal blocks is equivalent to finding the k-way minimum-cut partitioning

of the induced UWG. It should be noted that the permutated Q (Figure 4.5b)

is mathematically equivalent to the original Q (Figure 4.5a). Thus, with the

proper permutation on decision vectors (x and y) and right-hand sides (cx

and cy), a permutated linear system is also equivalent to the original one.

After the permutation, the block-Jacobi preconditioner in Figure 4.5(c) can

be obtained by simply ignoring all off-block-diagonal non-zero entries in the

permutated matrix in Figure 4.5(b).

From the placement point of view, each diagonal block in the block-

Jacobi preconditioner corresponds to a partition (sub-netlist). Solving lin-
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ear systems (4.3a) and (4.3b) with block-Jacobi preconditioners is physically

equivalent to performing placement for each partition individually by assum-

ing all off-partition cells are fixed at the location (x, y) = (0, 0)3. Although

this approach scales almost linearly with the number of partitions created, the

placement quality could degrade dramatically as wrong physical locations are

assumed for cells in inter-partition nets.

To mitigate this problem, rather than using (0, 0) as the fixed point,

off-partition cells are considered fixed at their locations induced from the linear

system solutions of the previous placement iteration. An example of a three-

pin net spanning three partitions is shown in Figure 4.6. We call this process

“placement-driven block-Jacobi preconditioning”.

A

B C

(a)

A

B C

(b)

A

B C

(c)

A

B C

(d)

Figure 4.6: An inter-partition net spanning three partitions. (a) illustrates
the net in the original netlist. (b), (c), and (d) show the net in the partition
containing A, B, and C, respectively. Dashed circles represent off-partition
cells that are fixed at their last locations.

Given a netlist consisting of the cell set V , a partitioning P on V , and

the P-permutated linear systems (4.3a) and (4.3b), if we denote the belonging

3The wirelength cost in x-direction for two cells can be written as wi,j(xi−xj)2. If cell i
and j are not in the same partition, the term −2wi,jxixj will be ignored in the block-Jacobi
preconditioner. Therefore, this cost term becomes wi,j(xi − 0)2 + wi,j(xj − 0)2. For cell i
(j), this is equivalent to assuming cell j (i) is fixed at x = 0. Similar conclusion is hold for
y-direction.
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partition of cell i ∈ V by π(i) and denote the placement-driven block-Jacobi

preconditioned linear systems of (4.3a) and (4.3b) by

Q̂xx = −ĉx, (4.4a)

Q̂yy = −ĉy, (4.4b)

then, Q̂ (Q̂x and Q̂y) and ĉ (ĉx and ĉy) can be defined as

Q̂i,j =

{
0, if π(i) 6= π(j),∀i, j ∈ V ,
Qi,j, otherwise,

(4.5a)

ĉi = ci +
∑

k∈V\π(i)

Qi,k lk,∀i ∈ V , (4.5b)

where lk denotes the (x or y) coordinate of cell k ∈ V in the previous place-

ment iteration. Compared with the original block-Jacobi preconditioning, our

placement-driven block-Jacobi preconditioning only differs by the right-hand

sides in linear systems. Therefore, the SPD property is retained in linear sys-

tems (4.4a) and (4.4b) and diagonal blocks can still be solved independently

by PCG.

Since the matrices Qx and Qy are placement dependent, from the

quality perspective, it is ideal to perform two (one each for x and y) UWG

minimum-cut partitionings for each placement iteration. However, doing so

will result in a dramatic amount of runtime overhead. Therefore, only one

partitioning is done right before the first parallelized placement step as shown

in Figure 4.4. Considering Qx and Qy change after every placement iteration,

hypergraph minimum-cut partitioning is adopted to approximate the varied
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optimal matrix partitioning solutions.

4.1.3.3 Parallelized Incremental Placement Correction (PIPC)

Although applying placement-driven block-Jacobi preconditioning can

reduce quality loss to some extent, it is no longer effective enough once more

partitions (e.g., more than 4) are created. To further mitigate the placement

quality degradation introduced by partitioning, the idea of additive correction

multigrid method [28] is adopted to incrementally correct the solutions of the

linear systems (4.4a) and (4.4b).

Without loss of generality, we only discuss x-direction in the rest of

this session, but conclusions that hold for x-direction are also applicable to

y-direction.

Let x(0) be the solution of the linear system (4.4a), that is,

Q̂x(0) = −ĉ, (4.6)

where Q̂ and ĉ are defined in Equation (4.5a) and Equation (4.5b), respectively.

If we can find ∆x satisfying

Q∆x = −c−Qx(0), (4.7)

the solution of the original linear system (4.3a) will be x(0) + ∆x. Intuitively,

∆x represents the discrepancy between current placement x(0) and the optimal

placement x∗ and it is, physically, a very local and smooth perturbation around

the placement x(0).
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Now we present the approach to find ∆x. Let r(0) = −c − Qx(0) and

N = Q̂−Q. Then, solving linear system (4.7) is equivalent to solving

Q̂∆x = N∆x+ r(0). (4.8)

The iterative method now becomes solving ∆x(k) for k ≥ 1 with given ∆x(0)

by

Q̂∆x(k+1) = N∆x(k) + r(0), (4.9)

which can be further written as

∆x(k+1) = ∆x(k) + Q̂−1(r(0) −Q∆x(k)). (4.10)

Intuitively, if ∆x(k) and ∆x(k+1) are becoming closer and closer (i.e., ∆x(k)

converges), we have r(0) − Q∆x(k) approaches to 0. This indicates that once

∆x(k) converges, it will always converge to the same solution. To formally

prove the convergence, consider the following lemma [65].

Lemma 4.1.1 Let Q = Q̂−N , with Q and Q̂ symmetric and positive definite.

If the matrix 2Q̂ − Q is positive definite, then the iterative method defined in

Equation (4.10) is convergent for any choice of the initial ∆x(0). Moreover,

the convergence of the iteration is monotone with respect to the norm || · ||Q
(i.e., ||r(0) −Q∆x(k+1)|| < ||r(0) −Q∆x(k)||, k = 0, 1, ...).

Now we can conclude the following proposition.

Proposition 4.1.2 By picking any placement-driven block-Jacobi precondi-

tioner of Q as Q̂, the iterative method defined in Equation (4.10) is monoton-
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ically convergent for any choice of ∆x(0).

Proof 1 Since |Qi,i| >
∑

j 6=i |Qi,j|,∀i ∈ V, both Q and Q̂ are symmetric strictly

diagonally dominant matrices. By the definition of Q̂ in Equation (4.5a), the

matrix Ω = 2Q̂−Q can be defined as

Ωi,j =

{
−Qi,j, if π(i) 6= π(j), ∀i, j ∈ V ,
Qi,j, otherwise.

So Ω = 2Q̂ − Q is also a symmetric strictly diagonally dominant matrix. A

symmetric strictly diagonally dominant real matrix with nonnegative diagonal

entries is positive definite. Therefore, 2Q̂ − Q is positive definite and, thus,

the iterative scheme defined by Equation (4.10) will converge monotonically.

Proposition 4.1.2 reveals two important properties of the iterative

method in Equation (4.10): (1) with a sufficient number of iterations, the

exact solution, ∆x, of the linear system (4.7) can be reached, hence, we can

obtain the exact solution, x(0) + ∆x, of the linear system (4.3a); (2) since the

convergence is monotone, more iterations guarantee better solutions (i.e., so-

lutions that are closer to the exact solution). These two properties imply that,

by using this iterative method, placement quality and runtime can be perfectly

traded to each other. Thus, different trade-offs can be made accordingly under

different scenarios.

Another attractive property of the iterative method in Equation (4.10)

is its strong parallelizability. Almost all the runtime of solving Equation (4.10)
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is taken by computing Q̂−1(r(0) −Q∆x(k)), which is equivalent to solving

Q̂x = r(0) −Q∆x(k). (4.11)

Q̂1

Q̂2

Q̂3

Q̂4

x1

x2

x3

x4

r
(0)
1

r
(0)
2

r
(0)
3

r
(0)
4

Q1

Q2

Q3

Q4

Q̂ x r(0) Q ∆x(k)

· = − ·

Figure 4.7: Parallelization scheme of solving linear system (4.11) with four

partitions. Shaded regions represent diagonal blocks in Q̂ and Q. Different
colors denote different partitions that can be solved in parallel.

Figure 4.7 illustrates the parallelization scheme of solving this linear

system by an example with four partitions. By blocking matrix Q along rows,

each strap in Q can be constructed independently and solving linear system

(4.11) becomes solving the following sub-system for each partition separately

and then assembling their solutions (xi) together.

Q̂ixi = r
(0)
i −Qi∆x

(k),∀i ∈ P , (4.12)

where Q̂i, xi, r
(0)
i , and Qi are partial matrices and vectors corresponding to

partition i as illustrated in Figure 4.7, and P denotes the set of partitions.

Algorithm 15 summarizes the overall flow of our parallelized incremen-

tal placement correction (PIPC) scheme. The partial matrix Qi of Q for each
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partition is constructed in parallel from line 1 to line 3. Then the linear sys-

tem (4.12) for each partition is solved in parallel from line 7 to line 9. After

that, the solution of the linear system (4.11) is obtained by assembling partial

solutions together at line 10. The solution after each correction iteration is

incrementally updated at line 11. The loop from line 6 to line 13 is repeated

until the correction iteration limit I is reached.

Algorithm 15: Parallelized Incremental Placement Correction

Input : The set of partitions P, the solution of the linear system
(4.4a) x(0), and the number of correction iterations I.

Output : A better solution than x(0).
1 parallel foreach i ∈ P do
2 Construct Qi (See Figure (4.7));
3 end
4 k ← 0;

5 ∆x(0) ← 0;
6 while k < I do
7 parallel foreach i ∈ P do

8 Solve Q̂i∆x
(k+1)
i = r

(0)
i −Qi∆x(k);

9 end

10 ∆x(k+1) ← (∆x
(k+1)
1 ,∆x

(k+1)
2 , ...,∆x

(k+1)
|P| );

11 ∆x(k+1) ← ∆x(k) + ∆x(k+1);
12 k ← k + 1;

13 end

14 return x(0) + ∆x(I);

4.1.3.4 Varied PIPC Configuration

In general, the placement quality degrades as the number of partitions

increases. Therefore, it is not wise to perform the same amount of PIPC for

different numbers of partitions, which might be overkill for small partition
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counts but insufficient for a large number of partitions. To resolve this issue,

PIPC is configured based on the number of partitions created.

In UTPlaceF 3.0, we configure three related variables: (1) the frequency

of applying PIPC; (2) the number of correction iterations in each PIPC; (3)

the number of PCG iterations in PIPC. For small partition counts, good place-

ment quality can still be maintained by infrequent PIPC (e.g., once every 3

placement iterations) with only a few correction iterations (e.g., 1 or 2) each

time. As the partition count increases, both PIPC frequency and correction

iteration count need to be increased properly to control the quality degrada-

tion. The third variable, PCG iteration count in PIPC, is tuned to further save

runtime. Since the solution of PIPC (∆x) is essentially a local perturbation

of the existing placement (x(0)), its magnitude is typically much smaller than

x(0). Therefore, we can save some PCG iterations in PIPC without losing too

much placement quality. The detailed configuration will be further discussed

in Section 4.1.4.1.

4.1.4 Experimental Results

UTPlaceF 3.0 is implemented in C++ and compiled by g++ 4.8.4.

OpenMP 4.0 [2] is used to support multi-threading, GNU libstdc++ parallel

mode [46] is used to parallelize the sorting in rough legalization, hypergraph

partitioning tool PaToh [61] is used to partition netlists, and the PCG in

Eigen3 [1] is used to solve sparse SPD linear systems. All the experiments

are performed on a Linux machine running with Intel Xeon E5-2690 v3 CPUs
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(2.60 GHz, 24 cores, and 30M L3 cache) and 64 GB RAM.

Table 4.2: ISPD 2016 Placement Contest Benchmarks Statistics

Benchmark #LUT #FF #RAM #DSP

FPGA-01 50K 55K 0 0
FPGA-02 100K 66K 100 100
FPGA-03 250K 170K 600 500
FPGA-04 250K 172K 600 500
FPGA-05 250K 174K 600 500
FPGA-06 350K 352K 1000 600
FPGA-07 350K 355K 1000 600
FPGA-08 500K 216K 600 500
FPGA-09 500K 366K 1000 600
FPGA-10 350K 600K 1000 600
FPGA-11 480K 363K 1000 400
FPGA-12 500K 602K 600 500

Resources 538K 1075K 1728 768

The benchmark suite released by Xilinx for the ISPD 2016 FPGA place-

ment contest [79] is used to evaluate the efficiency of UTPlaceF 3.0. The

statistics of the benchmarks are listed in Table 4.2. Since this work is focused

on placement parallelization, all routability optimizations are removed and

only wirelength is considered. In the experiments, the CLB resource demands

of all LUTs and FFs are set to 0.08 and the target density is set to 1.0 for

all benchmarks. In the target FPGA architecture, considering a vertical route

needs to go through about twice as many switch boxes as a horizontal route

needs for the same length, the wirelength is measured by the scaled HPWL

(sHPWL) defined as

sHPWL = 0.5 HPWLx + HPWLy, (4.13)

where HPWLx and HPWLy denote the x- and y-directed components of HPWL
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in Equation (4.1), respectively.

4.1.4.1 Parallelization Configuration

Table 4.3: Parallelization Configuration of UTPlaceF 3.0 Under Different
Numbers of Threads

# Threads 1 2 4 8 16

# Partitions 1 1 2 4 8
# PCG Iter. 250 250 250 250 250
PIPC Period - - - 3 1

# Iter. of each PIPC - - - 1 1
# PCG Iter. in PIPC - - - 150 50

The parallelization configuration used for our experiments is presented

in Table 4.3. If N (N > 1) threads are available, we always generate bN
2
c

partitions and deal x and y separately using 2 threads in each partition. The

number of PCG iterations for solving linear systems (4.3a), (4.3b), (4.4a), and

(4.4b) are universally set to 250. PIPC is disabled for 1, 2, and 4 threads, since

good placement quality can be achieved with placement-driven block-Jacobi

preconditioning alone. For the case of 8 threads, PIPC is applied every 3

placement iterations and each time only one correction iteration is performed.

For 16 threads, PIPC needs to be applied at every placement iteration to

maintain good solution quality. The numbers of PCG iterations in PIPC are

set to 150 and 50, respectively, for 8 and 16 threads. Although fewer PCG

iterations are performed for 16 threads, the quality can be guaranteed by its

more frequent PIPC calls.
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4.1.4.2 PIPC Effectiveness Validation

The experimental results without PIPC (but with placement-driven

block-Jacobi preconditioning) are presented in Table 4.4. We report the sH-

PWL (WL) in the unit of 103, runtime (RT) in the unit of second and their

ratios (WLR and RTR) normalized to corresponding 1-thread execution.

On average, without PIPC, UTPlaceF 3.0 achieves 1.7×, 2.8×, 4.4×,

and 5.9× speedup by using 2, 4, 8, and 16 threads. With 8 and 16 threads,

the wirelength degrades by 2.4% and 6.5%, respectively.

Since PIPC is not applied for the cases of 1, 2, and 4 threads as shown in

Table 4.3, we only report the results with PIPC enabled for 8 and 16 threads in

Table 4.5. As can be seen, PIPC effectively reduces the wirelength degradation

from 2.4% and 6.5% to 1.7% and 3.0% with only a little runtime overhead.

With PIPC, UTPlaceF 3.0 can still achieve 5× speedup by using 16 threads.

It is worthwhile to mention that PIPC is a general technique that can

be configured for different runtime and quality trade-offs. The result shown

in Table 4.5 is only a set of experiments to demonstrate the effectiveness of

PIPC by using the configuration in Table 4.3.
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Table 4.5: Comparison of UTPlaceF 3.0 with PIPC Under Different Numbers
of Threads

Designs
8 Threads 16 Threads

WL RT WLR RTR WL RT WLR RTR

FPGA-01 230 11 1.013 0.256 232 9 1.020 0.200
FPGA-02 448 19 1.024 0.261 453 15 1.037 0.207
FPGA-03 1719 57 1.034 0.247 1674 46 1.007 0.201
FPGA-04 3406 68 1.009 0.270 3379 51 1.001 0.204
FPGA-05 6413 85 0.986 0.290 6549 64 1.007 0.217
FPGA-06 3125 114 0.994 0.254 3203 91 1.019 0.203
FPGA-07 6160 115 1.053 0.258 6507 90 1.112 0.201
FPGA-08 5848 130 1.053 0.247 6151 103 1.107 0.197
FPGA-09 7576 156 1.035 0.268 7341 114 1.003 0.197
FPGA-10 3043 150 0.994 0.258 3036 116 0.992 0.200
FPGA-11 7077 154 1.015 0.256 7287 113 1.045 0.189
FPGA-12 3845 187 1.002 0.227 3897 144 1.016 0.175

Geo. Mean - - 1.017 0.257 - - 1.030 0.199

Table 4.6: Runtime Breakdown of UTPlaceF 3.0 Under Different Numbers of
Threads

Components
1 Threads 2 Threads 4 Threads 8 Threads 16 Threads

RTR* RT%† RTR RT % RTR RT % RTR RT % RTR RT %

Solve Linear System 0.851 85.1% 0.449 80.6% 0.231 65.6% 0.125 48.5% 0.076 38.0%
Constr. Linear System 0.073 7.3% 0.047 8.4% 0.047 13.3% 0.034 13.4% 0.025 12.6%

Rough Legalization 0.075 7.5% 0.053 9.5% 0.042 11.9% 0.036 14.0% 0.033 16.7%
Partition Netlist - - - - 0.005 1.5% 0.009 3.6% 0.016 7.9%

PIPC - - - - - - 0.033 12.8% 0.034 16.9%
Others 0.001 0.1% 0.008 1.5% 0.027 7.7% 0.020 7.7% 0.016 7.9%

Total 1.000 100.0% 0.557 100.0% 0.353 100.0% 0.257 100.0% 0.199 100.0%

* RTR: Runtime ratio of each component w.r.t. the total runtime of 1-thread execution.
† RT%: The percentage of total runtime taken by each component under different threads.

4.1.4.3 Runtime Analysis

Table 4.6 presents the runtime breakdown of UTPlaceF 3.0 under dif-

ferent numbers of threads. We divide the total runtime into components of

solving linear systems, linear system construction, rough legalization, netlist
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partitioning, PIPC, and others. The normalized runtime (Norm. RT) and run-

time percentage (RT %) are reported for each component under each thread

count. As the number of threads increases, the runtime of solving linear sys-

tems reduces nearly linearly. However, the speedups of linear system construc-

tion and rough legalization saturate quickly. For the case of 16 threads, the

runtime taken by each component becomes pretty much comparable.

According to the runtime breakdown, we can see that further speedup

with more threads becomes difficult for the following four main reasons: (1)

solving linear systems does not dominate the total runtime anymore, thus,

the overall gain from it becomes limited; (2) linear system construction and

rough legalization scale poorly; (3) the runtime of netlist partitioning is almost

linear to the number of partitions; (4) more PIPC would be needed to maintain

good placement quality. However, it is still possible to push the runtime down

to the limit by the following several improvements: (1) combine low-level

(matrix-vector operations) parallelization with our partition-based framework;

(2) combine the high-level parallelization scheme proposed by [33] with our

parallelization for sorting; (3) use parallelized partitioning tools (the one in

UTPlaceF 3.0 now is single-threaded).

4.1.5 Summary

In this section, we have proposed a parallelization framework, UT-

PlaceF 3.0, for modern FPGA quadratic placement. A placement-driven

block-Jacobi preconditioning technique as well as a parallelized incremental
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placement correction technique are proposed for boosting the overall perfor-

mance of FPGA global placement. Our experiments demonstrate that, by

fully leveraging today’s multi-core systems, UTPlaceF 3.0 can achieve signifi-

cant speedup while maintaining competitive placement quality.
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Chapter 5

Conclusion

This dissertation has proposed a set of algorithms and methodologies

for large-scale heterogeneous FPGAs. The major contributions can be sum-

marized as follows.

• Chapter 2 has explored different core FPGA placement algorithms and

methodologies. (a) Section 2.3 has presented UTPlaceF, a quadratic

placer with a physical- and routability-aware packing algorithm. (b)

Section 2.4 has described UTPlaceF-DL, a quadratic placer with a novel

simultaneous packing and legalization algorithm that is inspired by the

real-world college admission process. (c) Section 2.5 has developed elf-

Place, a nonlinear placer that casts the heterogeneous density constraints

to separate but unified electrostatic systems. UTPlaceF won the first-

place award of the ISPD 2016 routability-driven FPGA placement con-

test held by Xilinx. UTPlaceF-DL and elfPlace further improve the

essential placement quality and demonstrate that they are among the

best approaches in the academic research.

• Chapter 3 has focused on algorithms to honor clock network feasibil-

ity during placement. (a) Section 3.3 has presented UTPlaceF 2.0,
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which approximates clock demands based on a net bounding box model

and resolves clock routing congestions by a novel iterative minimum-

cost flow-based cell assignment algorithm. (b) Section 3.4 has described

UTPlaceF 2.X, which is an extension of UTPlaceF 2.0. Instead of us-

ing bounding-box estimation, UTPlaceF 2.X explicitly constructs clock

trees and explores a much larger clock routing solution space based on

the branch-and-bound idea. UTPlaceF 2.0 won the first-place award of

the ISPD 2017 clock-aware FPGA placement contest held by Xilinx. UT-

PlaceF 2.X demonstrates even better solution quality over UTPlaceF 2.0,

especially on designs with high clock utilization.

• Chapter 4 has explored placement algorithms to exploit the paral-

lelism on multi-core systems. A general parallelization framework, UT-

PlaceF 3.0, is presented to achieve ultra-fast yet high-quality placement

solutions. It leverages the idea of block-Jacobi preconditioning and addi-

tive multigrid method and demonstrates 5× speedup with 3% wirelength

degradation on industrial-strength benchmarks.

After the above explorations and discussions, this dissertation has

demonstrated the significance of placement to the FPGA implementation qual-

ity and efficiency. With the recent successes of machine learning and the boom

of hardware accelerators (e.g., FPGAs and GPUs), many conventional and

emerging issues in FPGA implementations can be relieved. In particular, the

following future research directions are of great interest and potential:
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• Most FPGA implementation flows are developed targeting CPU plat-

forms and executed on local machines. The recent advancement in dis-

tributed computing and FPGA- and GPU-based hardware acceleration

can potentially reduce the FPGA implementation time by leveraging the

power of data centers.

• Various early estimations can be made and improved by machine learning

techniques. Potential candidates include but not limited to the predic-

tion and estimation of timing, routability, power, and resource usage

during or even before placement.

• Existing analytical models can be improved by machine learning models.

One such example is the wirelength model. Existing models approximate

HPWL using quadratic and nonlinear functions. While by leveraging

deep neural networks, more accurate Steiner tree wirelength can be po-

tentially modeled to better guide the analytical placement optimization.

Future FPGAs are expected to involve more cross-layer optimizations,

where architectural design, logical design, and physical design are tightly linked

together to push the performance of future FPGAs to their limits. Mean-

while, future FPGAs are likely to be designed and optimized for each specific

application, e.g., deep neural networks, network dynamic routing, etc. Such

a highly customized FPGA design methodology requires design automation

tools to leverage domain-specific knowledge and achieve fast compilation in a

self-adaptive manner.
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